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Abstract. Vorticity in two-dimensional superfluids is subject to intense research

efforts due to its role in quantum turbulence, dissipation and the BKT phase transition.

Interaction of sound and vortices is of broad importance in Bose-Einstein condensates

and superfluid helium [1–4]. However, both the modelling of the vortex flow field

and of its interaction with sound are complicated hydrodynamic problems, with

analytic solutions only available in special cases. In this work, we develop methods

to compute both the vortex and sound flow fields in an arbitrary two-dimensional

domain. Further, we analyse the dispersive interaction of vortices with sound modes

in a two-dimensional superfluid and develop a model that quantifies this interaction for

any vortex distribution on any two-dimensional bounded domain, possibly non-simply

connected, exploiting analogies with fluid dynamics of an ideal gas and electrostatics.

As an example application we use this technique to propose an experiment that should

be able to unambiguously detect single circulation quanta in a helium thin film.

PACS numbers: 67.25.dt, 67.25.dp, 42.60.Da, 42.82.Et

Keywords: cavity optomechanics, superfluidity, superfluid helium films, optical

resonators, third-sound, vortices, quantized circulation, persistent currents, 2D

superfluids, vortex-sound coupling, Finite Element Modelling.

1. Introduction

Superfluidity in two dimensions, first systematically investigated in the 70’s in helium

thin films [5–8], has sparked major research efforts in recent years, culminating in

the 2016 Nobel Prize, awarded for understanding the nature of superfluidity in two

dimensions [9–11]. The superfluid phase transition is native to a broad variety of
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physical systems, such as two-dimensional Bose-Einstein condensates [12, 13], exciton-

polariton condensates [14,15], and topological condensed matter systems [16]. Quantized

vortices play a crucial role in these two-dimensional fluids, as their binding into pairs

enables the emergence of long-range order and thereby transition to the superfluid

phase. Understanding of vortex dynamics provides a pathway for controlling vortices

with sound, imaging vortex distributions, understanding quantum turbulence, and

engineering dynamical interactions between vortices and sound [2,17–19].

Vortex dynamics in strongly interacting superfluids is of significance to a range

of research fields: In topological condensed matter physics, it is responsible for the

superfluid phase transition and the onset of dissipation [9–11]; In astrophysics, the

observed glitches in the rotation frequency of neutron stars are thought to result from

vortex-unpinning events [20]; evidence for half quantum vortices (HQVs) has been found

in superfluid 3He, where the HQVs in the A-phase of superfluid 3He are thought to host

Majorana-fermions, bearing promise for fault tolerant topological quantum computing

[21–23]; vortices in 3He are interesting as analogues of exotic topological defects [22,24]

— the broken-symmetry-core vortex in superfluid 3He-B corresponding to Witten-

strings [25–27]; the HQV in the polar phase of superfluid 3He corresponding Alice-

strings [28]; the spin-mass-vortex in 3He-B, which has been proposed as an analogue for

composite defects appearing in some grand unified theories of particle physics and even

the standard model [29,30]. Therefore, the ability to determine the flow field induced by

an arbitrary configuration of vortices, on an arbitrary and perhaps multiply-connected

geometry is of broad importance, as is the ability to predict the strength of vortex-sound

interaction.

In the case of Bose-Einstein condensates, pressure- and temperature-waves

constitute the relevant sound eigenmodes (first- and second-sound, respectively), while

for helium thin films, both these modes of oscillation are suppressed due to the

incompressibility of the fluid and the clamping of the normal fluid component. Surface

excitations, so-called third-sound waves, become the primary form of sound wave [31].

Recently, both observation of temperature-wave propagation in a two-dimensional Bose-

Einstein condensate [32], and real-time measurement and control of third sound on a

superfluid helium thin film [33] have been demonstrated.

Quantifying vortex flow fields and their interaction with sound waves has sparked

substantial research efforts. Ellis et al. [3, 34, 35] electrically excited third-sound modes

to swirl up an ensemble of vortices in a helium thin film — however, despite elaborate

mathematical analysis [36], their modelling of vortex-sound interaction was limited to

simple, centered vortex ensembles on a circular resonator. In the case of BECs, a

plethora of analyses for vortex-sound interaction has been performed [4,37–44] and the

dispersive interaction has been quantified for centered vortices in simple trap geometries

[37,38].

In this work, we model vortex flow fields and the interaction of sound modes with

vortices, in a two-dimensional superfluid by exploiting analogies with other areas of

physics. We map vortex dynamics onto electrostatics, and superfluid hydrodynamics
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onto fluid dynamics of an ideal gas. This allows us to draw on technically mature finite-

element-modelling (FEM) tools available for these fields. We show how the interactions

of sound and the flow field of arbitrary vortex distributions can be computed using

these tools on any two-dimensional, not necessarily simply connected, domain. Thus,

our work provides a theoretical framework for controlling and imaging vortices, and for

engineering a dynamical interaction between sound and vortices.

As an example, we discuss the interaction of sound Bessel modes on a disk-shaped

domain with quantized vortices, which is relevant for a number of experiments on

superfluid thin films [3, 33, 45, 46] and two-dimensional Bose-Einstein-condensates [32,

47, 48]. The interaction induces splitting between otherwise degenerate sound modes

[3, 37, 38]. We show how the vortex number can be extracted from experimental

measurement of the splitting. Further, we present a perturbative analytic model,

approximating the FEM-simulation for circular geometries, which offers some intuitive

insight on the vortex-sound coupling mechanism.

Lastly, we focus our analysis to the prospect of detecting quantized circulation

in helium thin films. While vortices in Bose-Einstein condensates can be visualized

by optical snapshots [49], and pinned vortices in exciton-polariton condensates can

be visualized by optical interferometry, no such direct observation technique exists

for helium thin films: the vortex core is an Ångström-size perturbation on an ultra-

thin film of transparent liquid, whose flow does not interact dissipatively with the

environment. Measurements on helium are important because, unlike exciton-polariton

condensates and most Bose-Einstein condensates, the atoms in superfluid helium are

strongly interacting, introducing dynamics that can not be modelled through the Gross-

Pitaevskii equation, and are not fully understood [50].

We finally propose an experiment where discrete steps due to an increase or decrease

in the number of circulation quanta could be observed for the case of a superfluid helium

film. We suggest a geometry where vortex pinning around an engineered topological

defect leads to experimentally observable quantized steps. Drawing on the finite element

model, we discuss how, in this geometry, the interaction with sound can be maximized,

so that these steps could be clearly resolved. This would enable the first direct detection

of quantized circulation in two-dimensional superfluid helium.

2. Sound-vortex interaction and their analogues

2.1. Sound in two-dimensional superfluids

Superfluid hydrodynamics is generally described by the continuity equation [3]:

dρ

dt
= −~∇ · (ρ~v), (1)

which derives from mass conservation, and the Euler equation:

d~v

dt
+ (~v · ~∇)~v = −g~∇ρ+ C, (2)



4

which derives from Newton’s second law (momentum conservation). In the case of

superfluid helium thin films, ~v is the superfluid flow velocity, ρ → h is the film height,

g = 3αvdw

h4
is the linearized Van-der-Waals acceleration [31, 50], and C = 0. In the

case of Bose-Einstein-condensate hydrodynamics in the Thomas-Fermi-limit at zero

temperature [51,52], ~v is again the flow velocity, ρ is the density, g → gBEC/M
2 describes

the coupling strength, where M is the mass of an individual atom contributing to the

condensate, gBEC the atom-atom coupling, and C = −~∇U/M describes the trapping,

with U being the extended potential [51] (see Appendix, table C2).

We assume small perturbations in the density (BEC) or film height (helium), η,

from an equilibrium ρ0, ρ(~r, t) = ρ0 + η(~r, t) with η � ρ0. Eqs (1) and (2) respectively

become:

η̇ = −ρ0
~∇ · ~v − ~v ~∇η, (3)

and

~̇v + (~v · ~∇)~v = −g~∇η + C, (4)

where we used the chain rule on the r.h.s. in Eq. (2). Substituting g → c2 = γRT/ρ0,

where R is the specific gas constant, T the gas temperature and c the speed of sound,

we find that the above equations are the linearized Euler and continuity equations,

describing small amplitude sound waves in an ideal gas in the isentropic limit [53] (see

Appendix B for derivation). This allows us to model them using the Aeroacoustics

→ Linearized Euler, Frequency Domain (lef) module in COMSOL, with appropriate

boundary conditions (see Appendix D.1). This provides the sound eigenmodes for an

arbitrary bounded geometry. Examples of eigenmodes on a circular and an irregularly

shaped two-dimensional resonator with free (‘Neumann’) boundaries are shown in

Fig. 1(a) [46] (see Appendix D.1). In this work, we analyse vortices and sound modes in

two-dimensional domains, as this applies to experiments [1,3,46] and allows a qualitative

discussion of the interaction. However, by choosing the appropriate dimension in the

FEM-simulation, the model could be generalized to three dimensions. The finite-

element-method allows us to add a background flow field, corresponding to the flow

generated by quantized vortices, and find the new sound eigenmodes in the presence of

that background flow.

2.2. Quantized vortices

A single vortex is described by a quantized circulation around a loop encompassing the

vortex core [54, 55] :∮
~vv · d~l = κ. (5)

Here, κ = 2π~/M is the circulation quantum. This ensures that the phase acquired

by the wave function upon propagation around any loop encompassing the vortex core
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Figure 1: (a) Finite Element Method (FEM) modelling of the sound eigenmodes existing

within a circular (left) and an arbitrarily shaped domain (right), with free boundary

condition (see Appendix D.1). Left: Bessel (m=1; n=2) mode. Right: Lowest-frequency

eigenmode of the geometry. Color code represents the magnitude of the displacement.

(b) FEM modelling of the flow field generated by point vortices within the domains

shown in (a). Left: simple case of the flow field of an off-centered clockwise (CW)

point vortex in a circular domain (see Appendix A.1). Right: flow field due to two

CW and one counterclockwise (CCW) point vortices. Surface color-code and red arrows

show the vortex flow velocity, in log scale. White lines represent the streamlines of the

unrotated electric displacement field ~D, which are potential lines for the superfluid flow.

(c) New ‘deformed’ (m=1; n=2) eigenmode of the circular geometry in the presence of

the background flow due to a large number of off-centered vortices located at a point

with radial offset of 0.7 R, where R is the resonator radius.

equals 2π. ~vv denotes the vortex-induced velocity field. For the simple case of a point

vortex on a plane, the solution is:

~vv(r) =
κ

2πr
êθ, (6)

where êθ is the unit vector in the tangential direction and r the distance from the

vortex core. In this work, we describe the quasi-static regime where the motion of

vortices during a sound oscillation period is negligible. This is valid in the limit of

pinned vortices [3, 35, 56] or low vortex densities where the velocity of the flow field

due to neighboring and image vortices is significantly less than the speed of sound. For

Bose-Einstein condensates at zero temperature, the sound velocity c = ~/Mξ, where

ξ is the healing length, equals the Landau critical velocity [52]. Therefore the quasi-

static approximation in Bose-Einstein condensates is valid if the separation between

neighbouring vortex cores is significantly larger than their core diameter. This condition

is typically fulfilled, and the sound velocity, with typical values of a few mm/s [57, 58]

is significantly higher than the background flow velocity caused by a typical ensemble

of vortices [1, 2]‡.

‡ The orbit period T for a single vortex offset from the center of a circular resonator of radius R by

a distance x is T = 4π2

κ

(
R2 − x2

)
. For superfluid helium thin film resonators with R ' 10−5 m, this

corresponds to typical Hz orbit frequencies compared to typical 105 Hz third-sound frequencies [33].
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In comparison to Eq. (5), Gauss’s law of electrostatics in two dimensions reads:∮
~D · d~n = Q, (7)

where ~D is the electric displacement field and Q the line charge. By rotating the electric

displacement field and replacing it with the flow field ~vv(
Dx

Dy

)
→

(
vv y
−vv x

)
, (8)

and substituting Q → κ, we retrieve the quantized circulation of the vortex defined in

Eq. (5), where ~vv = vv x êx+vv y êy. This provides the analogy between electrostatics and

vortex flow [54]. A point charge is a source of divergence (source/sink) for the electric

displacement field ~D. As is known from potential flow theory, upon the permutation

shown in Eq. (8), a point charge becomes a source of quantized circulation. We model

these equations using the Electrostatics(es) module of COMSOL, which allows us to

determine the vortex flow field on any two-dimensional geometry. Examples for vortex

flow fields on a circular and on an irregular geometry are shown in Fig. 1(b). Depending

on the number of vortices, their positions, and the resonator geometry, the sound

eigenmode shape may be significantly altered due to the presence of the vortices. Such

an example is shown in Fig. 1(c). Similarly, quantized circulation around a macroscopic

topological defect in a multiply-connected domain can be modelled as shown in section

4.

2.3. Sound-vortex interaction

We can understand the interaction of sound waves and vortices through the change in

the kinetic energy of a sound wave caused by addition/subtraction of a vortex. The

sound modes are orthogonal to vortex flow fields, which are fully defined by the rotation

around the vortex core (see Fig. 2 (b)). Therefore, the overlap of vortex- and sound

velocity fields is zero:∫
A

~vv · ~vs dA = 0, (9)

where A is the area of the domain and ~vs is the two-dimensional sound velocity

distribution. This appears to suggest that there is no coupling between the two flow

fields. However, interaction arises due to the change in film height (helium) or density

(BEC) associated with the sound wave. The interaction manifests in a splitting of sound

resonances due to the presence of vortices, and thus constitutes a dispersive (frequency-

shifting) interaction [59]. An example is shown in Fig. 2(c), where, due to increased

density/height on one side of the vortex, the increased kinetic energy due to velocity

addition on the right side of the vortex is not fully compensated by the reduction in

kinetic energy due to velocity subtraction on the left, resulting in a net increase in

energy due to the interaction.
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Figure 2: (a) Illustration of the flow profile of sound in superfluid. (b) Streamlines

of a 2D point vortex (red dot) in the plane. (c) Vortex flow (red) and sound flow

(black). When sound and vortex flow fields are confined inside a resonator geometry

(see Fig. (A1)), interference effects arise. Destructive interference (left) and constructive

interference (right), in the presence of a mode-induced height gradient, causes an

interaction between vortex and sound. The vertical axes in (a) and (c) can refer to

density in a Bose-Einstein condensate, or the film height in a superfluid helium thin

film.

We use Eqs (3) and (4) to calculate the new eigenmodes of sound in the presence

of the time-independent background flow ~vv, assuming a stationary configuration of

vortices, with flow field ~vv(~r). In this case, the total flow velocity is ~v(~r, t) = ~vv(~r) +

~vs(~r, t), where ~vs is the flow field associated with the sound eigenmode. The interaction

of persistent currents with sound modes has been quantified for simple, centered vortex

distributions on a disk-shaped resonator in superfluid helium thin films [3, 36] and for

centered vortices in different trap shapes in Bose-Einstein-condensates [37,38], but until

now there has not been a consistent approach for modelling of a non-trivial vortex

distribution in a non-trivial resonator shape, or for multiply connected domains. We

confirm the accuracy of this finite element based approach through the comparison

with an analytical expression derived for third-sound-vortex interactions on a circular

resonator (see Appendix A).

3. Results

To give an experimentally relevant example, in the following we study the interaction of

a quantized vortex with sound modes in a disk-shaped resonator with a free (‘Neumann’)

boundary condition (see Appendix D.1). This analysis is applicable to geometries used in
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superfluid helium experiments [33,45,46] with a microtoroidal optomechanical resonator

of R ∼ 30 µm radius (see Fig. 3(a)), those of refs. [3, 56, 60, 61], and also experiments

with two-dimensional Bose-Einstein-condensates, which are confined by a hard-walled

trap [1].

Regarding the experimental readout of sound modes, in experiments with helium

thin films, the Brownian motion of third sound waves, even at millikelvin temperatures,

is high enough to be resolved experimentally in real time [33]. Alternatively, the

amplitude of third sound can be tuned by laser heating or cooling [33], amplified by

optical absorption heating [45], or electrically excited [3]. For Bose-Einstein condensates,

collective modes can be excited by perturbing the condensate, locally exceeding the

critical velocity [62].

Solutions of the wave equation on a circular resonator are Bessel modes of the first

kind. They are fully quantified by their azimuthal (m ≥ 0) and radial (n ≥ 1) node

counts. Modes with m 6= 0 can be decomposed into opposite direction travelling waves,

that, in the absence of circulation, are degenerate. The presence of a vortex lifts the

degeneracy, shifts the mode co-rotating with the vortex flow to a higher frequency, and

the counter-rotating mode to a lower frequency (see Fig. 3(b)). This frequency splitting

∆f is experimentally resolved if it is larger than the decay rate Γ of the Bessel mode. As

the radial distance of the vortex from the center of the disk, rv, increases, the splitting

reduces. Firstly, this results from the lower total energy of the vortex flow field as the

vortex core approaches the boundary. Secondly, from symmetry arguments the overlap

between sound and vortex flow fields is maximized for a centered vortex. The radial

dependence of the mode shifts is plotted for the (m,n)=(1,8) free-boundary-condition

Bessel mode in Fig. 3(c). Each point corresponds to one result of the FEM-simulation,

as the vortex is stepped outwards from the center. As the vortex reaches the outer

boundary, the splitting vanishes.

We then compare the results from the FEM-model to the perturbative analytical

approach derived in Appendix A. We find that the two approaches agree reasonably

well, with the discrepancy always less that 10% of the maximal splitting at rv = 0 (see

Fig. (A3)). We ascribe the difference to a vortex-induced change in third-sound mode

shape due to the nonlinear (~v · ~∇)~v term in Eq. (4):

(~v · ~∇)~v = (~vv · ~∇)~vv + (~vs · ~∇)~vs + (~vv · ~∇)~vs + (~vs · ~∇)~vv. (10)

The analytic perturbation theory neglects all of these terms. The FEM model neglects

only (~vs · ~∇)~vs, which is a requirement to obtain eigenmodes for the sound waves. This

approximation is justified in the small sound amplitude limit η � ρ0, where the sound-

induced superfluid flow velocity vs (see Eq. (A.4)) is small compared to the vortex flow

velocity vv.

Fig. 3(d) shows the splitting per vortex as a function of vortex radial position

for four different Bessel modes. Critically, the presence of a vortex affects each Bessel

mode in a unique fashion. Leveraging this unique fingerprint, the work presented here
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Figure 3: (a) Schematic of a microtoroidal resonator of radius R = 30 µm covered with

a superfluid helium thin film, with one quantized vortex offset from the disk origin. The

red dot indicates the vortex core. (b) Illustrated frequency splitting of a Bessel mode

due to the presence of a vortex. (c) Frequency of the co- and counter-rotating (1,8)-

Bessel mode, with one quantized vortex on the resonator, as a function of radial vortex

position. (d) Frequency splitting dependence of (1,3), (1,5), (1,8), and (5,4) third-sound

modes on the radial offset of the vortex from the disk origin. Spatial profiles of the

modes are shown as insets. (e) Displacement amplitudes of modes shown in (d) as a

function of radius. Inset: annular region cut out by a circle, with its radius defined by

the vortex position - whose interaction with the vortex accounts for the majority of the

splitting (see text). All plots use free boundary condition for the modes; each dot in (c)

and (d) represents the result of a FEM-simulation.

enabled both the number and the spatial distribution of vortices in a cluster to be

extracted independently, by tracking several sound modes simultaneously [46].

One conceptual result of the perturbative analysis is an expression for the frequency

splitting that depends only on the profile of the Bessel mode and the radial position of

the vortex, and is independent of the details of the vortex flow field. In the case of a

single vortex the expression is:

∆f =
κm

2π2

∫ R
rv

dr
r
η2 (r)∫ R

0
dr r η2 (r)

, (11)

where m is the Bessel mode azimuthal number, rv is the radial position of the vortex,
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and η (r) = Jm
(
ζm,n

r
R

)
is the radial displacement profile of the Bessel mode. Jm is

the Bessel function of the first kind of order m, and m and n are respectively the

azimuthal and radial mode orders, ζm,n is a frequency parameter depending on the

mode order and the boundary conditions [63]. As vortex flow fields are subject to

linear superposition, we obtain the total splitting simply by adding contributions from

single vortices: ∆ftotal =
∑

i ∆fi. An interpretation of this result is that the splitting

introduced by a vortex at position rv is equal to the interaction energy between a

centered vortex (rv = 0) and a sound wave in the region of the disk with radius greater

that rv. So, in some sense, only the fraction of the sound wave at radius larger than

the radial position of the vortex core contributes to the splitting. This explains why the

splitting per vortex drops rapidly with rv for low m, high n order sound modes whose

kinetic energy is located close to the center of the disk, while the splitting is sustained

at higher radii for higher m, lower n order modes which are more radially extended.

4. Requirements for detection of single vortices/circulation quanta

In this section, we investigate the feasibility of observing the quantization of circulation

in two-dimensional superfluid helium due to the shift in sound frequencies induced by the

addition/subtraction of a single vortex. Remarkably, while quantized vortices are central

to the behavior of two-dimensional superfluids, they have yet to be directly observed in

two-dimensional helium. The experimental challenge is significant: the normal-fluid core

of a vortex in superfluid helium-4 is roughly one Angström in diameter [50], the thickness

of a superfluid helium film is typically less than 20 nm, and the refractive index of liquid

helium is close to that of vacuum (nHe ≈ 1.029). Combined, these characteristics prevent

direct optical imaging, as can be performed in Bose-Einstein condensates [48, 64]. In

bulk helium, many imaging techniques have relied on the use of some kind of tracer

particle [65–67], such as, for instance, micrometer-sized frozen hydrogen crystals. These

scatter light and are pulled in to the vortex core, enabling, for example, the recent

observation of Kelvin waves [67] in bulk. Naturally, such an approach is significantly

more difficult in two-dimensional films due to their few-nanometre thickness.

In order for the vortex-induced frequency splitting ∆f (Eq.(11)) experienced by a

third-sound wave [3,60] to reveal quantized steps, several challenges must be addressed.

First, in order to be resolvable, the splitting should be larger than the linewidth of

the third-sound resonances, ∆f & Γ, as shown in Figure 3(a). Second, any motion

of vortices on the resonator surface, as we experimentally observe elsewhere [46], will

lead to a continuous evolution of the splitting due to the continuous nature of the

splitting function ∆f(rv), see Figure 3(c), which may mask the quantized nature of the

circulation.

The first challenge can be met by engineering devices that are sufficiently small,

which maximizes ∆f by increasing the vortex-sound coupling, and by controlling

dissipation in these devices in order to reduce Γ. This can be achieved, for instance,

by engineering a smooth resonator that is decoupled from its environment by a small
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Figure 4: Topological defect in a disk-shaped resonator geometry. (a) Top-view of an

annular-shaped superfluid optomechanical resonator [63]. Blue shade represents the

disk, while the dashed grey region symbolizes the device’s pedestal. Red contours Ω1

and Ω2 represent closed loops around holes in the resonator. (b) Cut-view through the

dashed green line in (a), illustrating how contour Ω1 can be continuously deformed and

collapsed, while contour Ω2 cannot and encloses therefore a real topological defect. (c)

Single-spoked annular disk geometry [73], whose central hole is topologically identical

to that enclosed by contour Ω2.

connection point [33], or through careful choice of the resonator substrate material [68].

Indeed, ∆f ∼ Γ has been recently reported experimentally using microscale on chip

optical cavities [46]. A solution to the second challenge is to constrain the position

of the circulation around a macroscopic topological defect engineered on the surface

of the resonator. For instance, if we replace the topological defect naturally formed

by the normal fluid core (of radius a0) of a superfluid vortex by a microfabricated

hole of radius R � a0, the maximal velocity due to the quantized circulation becomes
κ

2πR
� κ

2πa0
(see Eq. (5)). This effectively clips the high velocity region of the flow

and is thus energetically favourable. The circulation will then preferentially accumulate

around this manufactured defect, up to large values of κ = h/mHe, as has been observed

in the spinning up of bulk helium in an annular container [69, 70]. The quantization

of the circulation then manifests as quantized values of the splitting experienced by

third-sound modes confined to the surface of the resonator.

This approach is in essence a two-dimensional analogue of Vinen’s experimental

technique for the first observation of circulation quanta in bulk helium [71, 72], where

circulation trapped around a vibrating wire lifted the degeneracy between the wire’s

normal modes of vibration. In Fig.(4), we propose a practical realization of such a

device based on a circular whispering-gallery-mode geometry, as used in our previous

work [33, 45]. We utilise the FEM-simulation to design a domain that maximises the

splitting ∆f , consisting of a single-spoked annular geometry [73] (see Fig. 4(c)).

Next we calculate the superfluid flow field resulting from quantized circulation

about the central topological defect, as shown in Fig. 4(c). For clarity, we assume

that this pinned circulation is the only source of circulation on the structure, i.e. there

are no vortex cores on the domain. This is calculated through FEM simulation using
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the ‘floating potential ’ boundary condition for the inner boundary, which enforces both

the prescribed circulation strength and parallelism of the flow to the boundary (see

Appendix D.1 for more details). The results are shown in Figure 5(a). The flow is

essentially confined to the outer annulus, with negligible flow up and down the spoke

and in the central disk. This can be understood by considering the closed contours 1

and 2 which both enclose the central hole. The circulation around both contours must

therefore be equal (see Eq. (5)), implying negligible additional circulation along the

extra path contained in contour 1.

Figure 5(b) shows an example of a third-sound mode of this spoked resonator

(which becomes the (1, 2) eigenmode of a circular resonator as the central hole gets

vanishingly small). The presence of the spoke, which connects the annular outer ring

to the device pedestal, lifts the degeneracy between the two normal modes, even in

the absence of circulation. The mode that has a stronger interaction with the spoke

(bottom) experiences an effectively larger resonator and therefore has a lower resonance

frequency.

In Figure 5(c), we show how this native geometric splitting [60] affects the third-

sound mode splitting as a function of the circulation around the central hole. Each

black dot represents a finite element simulation of the splitting between the high and low

frequency eigenmodes shown in Figure 5(b), as a function of the number of circulation

quanta around the central defect. This total splitting can be well reproduced through

an analytical expression of the form [35]:

stotal =
√
s2

circ + s2
geo. (12)

where sgeo = 700 Hz is the native geometric splitting for this device (dashed orange

line), scirc = N × scirc,0 the total circulation-induced splitting with N being the number

of circulation quanta and scirc,0 is the splitting per quantum. The solid red line represents

stotal, as given by Eq. (12). In Figure 5(d), we plot the experimentally relevant

parameter, which is the splitting increment due to each additional circulation quantum,

as a function of the number of circulation quanta already present around the defect.

This shows that the geometric splitting due to the spoke (or any unwanted deviation

from circularity) will mask the influence of the circulation-induced splitting for small

values of the circulation quanta, and reduce the visibility of the steps. For larger values

of the circulation, the size of the steps will asymptote towards the value scirc,0 = 54 Hz,

as the appropriate normal mode basis gradually shifts from orthogonal standing waves

to counter-propagating waves. Such a large quantized circulation can be experimentally

achieved by creating a strong superfluid flow, locally exceeding the critical velocity

— for instance by local evaporation of superfluid or by strong driving of third-sound

modes [33,45,46]. Alternatively, a sub-critical flow can be used to create a high persistent

current by reorganizing pre-existing vortex pairs through the Magnus force [3]. In Bose-

Einstein condensates, vortices can be created in high numbers by laser stirring [74].

We show that the proposed device would yield quantized steps in the third-sound

mode splitting on the order of 50 Hz, a value within reach of current experimental
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resolution [33, 46]. Note also that since the strength of the vortex-phonon interaction

scales inversely with resonator area (see Appendix A.3) the magnitude of the splitting

can be greatly enhanced by going towards miniature third-sound resonators. This is

illustrated in Fig. (A2), which shows the splitting per centered vortex on the (1,2)

Bessel mode as a function of resonator radius. While only of the order of milli-Hertz

for early cm-scale capacitively detected third-sound resonators [60, 61] (red and orange

dots), it reaches tens to hundreds of Hz with microtoroidal resonators [33,46] (blue dot),

and would attain tens of kHz with micron-radius resonators [75–77] (black dot).

5. Conclusion

We have developed finite-element modelling tools to compute the interaction between

any vortex flow and any sound wave, in arbitrary and potentially multiply-connected

two-dimensional domains. This capability offers great versatility, applicable to both

BEC superfluids and to thin-film superfluid helium. There is a need for numerical

techniques to determine vortex and sound velocity fields and their interactions. In both

cases, analytical solutions for the vortex flow field only exist if the domain exhibits a high

degree of symmetry. Even if such solutions exist, when departing from simple geometries

like a disk, the implementation of the method of images in order to cancel the normal

component of the vortex flow on the resonator boundary [78] becomes challenging, and

one needs to rely on conformal mapping techniques [1, 79]. For multiply-connected

domains, solutions often require an infinite series of images as the domain possesses two

or more boundaries, and analytical solutions are only available for simple limit-cases

such as a centered annular domain [70].

We verify the validity of our approach by comparing its results to a perturbation

theory analysis which we derive in the analytically tractable case of a circular resonator

geometry. We derive in this case a useful simple analytical formula, which can be

used to compute the vortex-sound coupling for arbitrary configurations of vortices on

a disk, without requiring the vortex flow field. Understanding precisely how superfluid

vortices and persistent currents couple to sound waves – at the level of a single vortex

or circulation quantum – is a crucial capability to shed light on the physics of strongly

interacting superfluids, and perform continuous non-destructive measurements of vortex

dynamics in these systems [46].

The modelling techniques presented here may help shed light on the validity of

phenomenological models such as the point-vortex model [80,81] in superfluids, as well

as further our understanding of quantum turbulence [2, 17–19] and energy dissipation

in superfluids [56,82,83].
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identical circulation (Eq.(5)). Dimensions of the resonator used for simulation: outer
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(b) Non-degenerate eigenmodes of the spoked resonator, split by the presence of the

spoke, with free boundary conditions at both boundaries. Color code represents the

magnitude of the surface displacement. (c) Contribution to the total mode splitting (red,

stotal =
√
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(blue, scirc = N × scirc,0 = N × 54 Hz) contributions, as a function of the number

of circulation quanta present around the topological defect. Note that the number
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experiments with helium-coated microresonators [46]. (d) Splitting increment per added

circulation quantum.
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Appendix A. Analytical derivation of the vortex-sound coupling

Appendix A.1. Analytical description of the point vortex flow field ~vv

The streamfunction Ψ of a point vortex of strength κ in a 2D plane is Ψ = − κ
2π

ln (r).

The streamfunction Ψ for the the well-known problem of a point vortex inside a circular

domain [78], is given in cartesian coordinates by:

Ψ = − κ

2π

(
ln

(√
(x−X1)2 + y2

)
− ln

(√
(x−X2)2 + y2

))
(A.1)

Here X1 is the radial offset of the vortex (along the x axis), and X2 = R2

X1
is the

radial coordinate of the opposite circulation image-vortex required to enforce no flow

accross the resonator boundary [78]. From the streamfunction Ψ, the vortex velocity

components are given by:

vvx =
∂Ψ

∂y
; and vvy = −∂Ψ

∂x
(A.2)

Using Eq.(A.2), we plot in Fig. A1(a) the flow streamlines of a vortex offset by R/2

inside a circular resonator of radius R.

Appendix A.2. Analytical description of the sound flow field ~v3

In the following, for simplicity we derive the analytic expressions for helium thin

films (i.e. third-sound waves). However, the analysis can be applied to BECs with

a straightforward replacement of variables (see Appendix C).

The complex surface displacement amplitude η of a travelling superfluid third-sound

wave (or alternatively the sound-induced density fluctuations for a BEC) in a circular

domain are given by [63]:

η (r, θ, t) = η0 Jm

(
ζm,n

r

R

)
ei(mθ±Ω t). (A.3)

The associated superfluid flow speed ~v3 is given by:

~v3 = ± i c2
3

Ωh0

~∇η (A.4)
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Figure A1: (a) Streamlines of ~vv (~r) for a CW vortex (green dot) offset from the origin

(red dot) in a circular domain. (X1 = 0.5R; X2 = 2R). (b) Black arrows represent the

instantaneous superfluid flow field ~v3 (~r), for a clockwise-rotating (m = 1; n = 2) Bessel-

mode with free boundary condition. Surface plot shows the associated surface deflection

η (~r) (color code: red = positive, blue=negative). CW nature can be seen by noticing

the fluid starting to accumulate ahead of the red peak, where ~∇ · ~v3 < 0. The velocity

field is positive under the peaks, negative under the troughs, and irrotational, i.e. with∮
~v3 · ~dl = 0 for all contours inside the superfluid. (c) Vector field of ~v3 (~r)×η (~r). While

from symmetry one sees that
∫∫
~v3 · ~vv = 0, multiplication by the surface deflection

profile η (~r) leads to a non-zero energy shift of the CW/CCW third-sound waves, see

Eq.(A.7).

with ‘+’ and ‘-’ signs respectively corresponding to the CW and CCW travelling cases, as

in Eq.(A.3). Note that while the motion of a solid circular membrane would also be given

by Eq.(A.3), its velocity would be different to Eq.(A.4), leading to dramatically different

effective mass scalings [63]. The surface displacement profile < (η) and instantaneous

velocity field < (~v3) are plotted in Fig. A1(b), for a CW (m = 1, n = 2) Bessel mode

with free boundary conditions. While such a third-sound mode flow is irrotational and

therefore not associated with any circulation (
∮
~v · ~dl = 0 for any closed loop inside the

superfluid), it is associated with a net mass flow (in the CW case, there is more fluid

moving clockwise under the wave peak (red) than counter-clockwise under the trough

(blue), and similarly there is net CCW fluid motion for the CCW mode). It is this net

mass flow which couples to the vortex field, and results in a higher kinetic energy for

the sound mode travelling in the same direction as the vortex flow. This argument is

developed in the analytical splitting calculation detailed below.

Appendix A.3. Analytical description of vortex-sound coupling

Here we derive an analytical expression for the frequency splitting experienced by a

third-sound mode due to a vortex inside a circular resonator, and show good agreement

with the results of the FEM simulations shown in Figure 3. This is a valid approximation

to the FEM-model if the change in mode shape due to vortices is small.

The kinetic energy difference ∆E (t) between a sound wave moving with- or against
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the flow of a quantized vortex is given by:

∆E (t) =
1

2
ρ

∫ 2π

θ=0

∫ R

r=0

∫ h0+η(r, θ, t)

z=0

(
||~v3 (~r, t) + ~vv (~r)||2 − ||~v3 (~r, t)− ~vv (~r)||2

)
r dr dθ dz(A.5)

This general expression works for any sound mode and any vortex position. Making the

reasonable assumption that ~v3 and ~vv are independent of z, as the inviscid nature of

the superfluid precludes any in-plane vorticity and does not require cancellation of the

horizontal velocity at z=0 (no-slip boundary), Eq.(A.5) becomes:

∆E (t) = 2ρ

∫ 2π

θ=0

∫ R

r=0

~v3 (r, θ, t) · ~vv (r, θ) (h0 + η (r, θ, t)) r dr dθ (A.6)

Since both v3x and vvx as well v3y and vvy are functions of θ of different parity (see

Figure A1),
∫∫
~v3 · ~vv = 0, and equation (A.6) becomes:

∆E (t) = 2ρ

∫ 2π

θ=0

∫ R

r=0

~v3 (r, θ, t) · ~vv (r, θ) η (r, θ, t) r dr dθ (A.7)

This is essentially a form of surface-averaged Doppler shift, weighted by the displacement

amplitude η of the mode. Next, we consider the time-averaged energy difference 〈∆E〉,
averaged over a sound oscillation period T:

〈∆E〉 =
1

T

∫ T

0

∆E (t) dt = 2 ρ

∫
r

∫
θ

r dr dθ

(
vv r

1

T

∫ T

0

v3 r η dt

)
+

(
vv θ

1

T

∫ T

0

v3 θ η dt

)
(A.8)

where we have broken down ~v3 and ~vv into their radial and angular components,

respectively v3 r and v3 θ, and vv r and vv θ. From Eqs.(A.3)&(A.4), we note that v3 r

and η are out-of-phase, while v3 θ and η are in phase. The first integral over time in

Eq.(A.8) reduces therefore to zero, while the second integrates to 1
2
|v3 θ| |η|. We therefore

get from Eq.(A.3) and Eq.(A.4):

〈∆E〉 =
ρm c2

3

Ωh0

∫ R

r=0

r dr η2
0

J2
m

(
ζm,n

r
R

)
r

∫ 2π

θ=0

vv θ dθ (A.9)

which we rewrite, with η (r) = η0 Jm
(
ζm,n

r
R

)
, as:

〈∆E〉 =
ρm c2

3

Ωh0

∫ R

r=0

dr

r
η2 (r)

∫ 2π

θ=0

vv θ r dθ (A.10)

We notice here that the integral over θ corresponds to a closed contour integral
∮
~vv ·d~l,

where the contour is a circle of radius r centered at the origin. From Eq.(5), we know

that the value of this contour integral is zero if it does not enclose the vortex core, and

κ if it does. The transition occurs for r = offset, the radial offset of the point vortex.

We can therefore rewrite Eq.(A.10) with a modified radial integration lower bound:

〈∆E〉 =
ρm c2

3 κ

Ωh0

∫ R

r=offset

dr

r
η2 (r) (A.11)

Since for a harmonic oscillator E is proportional to Ω2, ∆E
E

= 2∆Ω
Ω

and the splitting ∆f

(in Hz) equals:

∆f =
Ω

4π

∆E

E
, (A.12)
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Figure A2: (a) FEM simulation of frequency splitting of the (m = 3, n = 1) Bessel mode

due to a centered vortex, whose charge is increased from κ to> 200κ, displaying linearity

over that range. (b) Splitting per centered vortex for the (m = 1, n = 2) Bessel mode

with free boundary conditions, as a function of resonator radius. Experimental devices

shown in red [61] and orange [60] correspond to cm-scale capacitively detected third-

sound waves. Blue dot corresponds to an optical WGM microtoroid resonator [33, 46].

Black dot shows two additional orders of magnitude improvement over current state-of-

the-art can be achieved by going to micron-radius WGM resonators [75,76].

with the kinetic energy E of the third-sound mode, for m > 0, given by [63]:

E =
1

2

∫
ρ v2 (~r) d3 (~r) =

π ρ c2
3

2h0

∫ R

0

η2 (r) r dr (A.13)

Combining Eqs.(A.10) and (A.13), we recover the result shown in Eq.(11) of the main

text:

∆f =
κm

2 π2

∫ R
offset

dr
r
η2 (r)∫ R

0
dr r η2 (r)

(A.14)

We note that, as expected, the splitting does not depend on the superfluid parameters

(film thickness, density), and that it is linear in vortex flow field (see Eq.A.6), such

that the splitting obeys the superposition principle, whereby the splitting due to

an ensemble of vortices is equal to the sum of the splittings per vortex calculated

individually. The result Eq.(A.14) holds for both superfluid helium thin films and Bose-

Einstein condensates, with η being the film thickness perturbation/density perturbation,

respectively. We numerically verify this result in the FEM simulations, where linearity

is generally maintained up to large vortex charges on the order of ∼ 102 κ, as shown in

Figure A2(a) and (b). Note that Eq.(A.14) does not diverge as the vortex offset tends

to 0, as η (0) = 0 for all m > 0 Bessel modes. Interestingly, due to the contour-integral

identity used in Eq.(A.10), the final result does not require any knowledge of the vortex

flow field ~vv.
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Figure A3: Comparison between the results of the FEM simulations and the analytical

approach (Eq.(A.14)) for four different Bessel modes labelled by their (m,n) order,

showing good agreement between both methods without any scaling parameter.

(Resonator dimension R = 30 microns, fixed boundary conditions). Some small

quantitative differences between both solutions remain. For instance from Eq. A.14, the

analytical splitting has to be a monotonically decreasing function of the radial offset,

while the FEM calculation shows some regions of increased splitting with radial offset.

We ascribe these differences to vortex-induced changes in the eigenmode shape (see

Figure 1(c)), which are not taken into account in the perturbative analytical approach.

.

Appendix B. Derivation of linearized equations for an ideal gas

For the ideal gas, mass conservation and momentum conservation read, respectively [53]:

dρ

dt
= −~∇ · (ρ ~u) (B.1)

and

d~u

dt
+ (~u · ~∇)~u = −1

ρ
~∇p, (B.2)

where ~u(~r, t) is the flow velocity, ρ is the gas density and p the gas pressure. Isentropic

flow (i.e. the gas is in thermal equilibrium at all times) for an ideal gas implies [53]:

p = γRTρ and c2 = γRT, (B.3)
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where R is the specific gas constant, T is the gas temperature and c is the speed of

sound. We insert Eq. (B.3) in Eq. (B.2) and linearize for small density fluctuations,

ρ(~r) = ρ0 + α(~r) with α� ρ0, and recover Eqs. (3) and (4) in the main text.

Appendix C. Comparison tables

Here we show how quantities and equations from 2D-electrostatics can be mapped to

vortex-induced flow fields, and how acoustics of an ideal gas is mapped to third-sound

dynamics.

2D-electrostatics vortices

electric displacement field velocity field
~D(~r)[C/m2] ~vv(~r)[m/s]

electric line charge circulation quantum

Q[C/m] κ[m2/s]

Gauss’s law vortex flow equation∮
~D · d~n = Q

∮
~vv · d~l = κ

perfect electric conductor (ground) tangential flow boundary
~D × ~n = 0 ~vv · ~n = 0

Table C1: electrostatics and vortex flow field. The system is invariant under z-

translation, hence we use units and equations in two dimensions.

Appendix D. Supplementary information

Appendix D.1. Boundary conditions

In order to solve differential equations on the surface of a two-dimensional resonator,

constraints at the boundary have to be specified. Depending on the type of confinement

provided by the resonator, the boundary for third sound can be described either by

a fixed (‘Dirichlet’ ) or a free (‘Neumann’ ) boundary condition. A fixed boundary

condition η = 0 allows flow in and out of the resonator and the film height at the

boundary is fixed to the equilibrium film height. The free boundary condition ~v3 ·~n = 0,

where ~n is the normal vector on the boundary, allows film height fluctuations at the

boundary and prohibits flow in or out of the resonator. In COMSOL, for an ideal gas,

the free boundary condition corresponds to a rigid wall, where volume is conserved and

the gas pressure can oscillate freely at the boundary. The fixed boundary condition

corresponds to fixed pressure, where the gas pressure is fixed at the boundary and the

gas can freely flow in and out of the domain [84]. The vortex flow is tangential to

the boundary, ~vv · ~n = 0. In the electrostatics analogue, this translates to an electric

field which is exactly perpendicular to the boundary, with no tangential component.

This corresponds to a perfect electric conductor at the boundary and can be realized
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2D-acoustics sound in 2D-BEC third-sound dynamics

density perturbation density perturbation third-sound amplitude

α(~r, t)[kg/m2] η(~r, t)[kg/m2] η(~r, t)[m]

static density static density unperturbed film height

ρ0[kg/m2] ρ0[kg/m2] h0[m]

background flow irrotational vortex flow irrotational vortex flow

u0(~r)[m/s] vv(~r)[m/s] vv(~r)[m/s]

irrotational flow velocity sound flow velocity third-sound flow velocity

δ~u(~r, t)[m/s] ~vs(~r, t)[m/s] ~v3(~r, t)[m/s]

static pressure atom-atom coupling linearized VdW coefficent

p0[J/m2] gBEC[Jm2] g = 3αvdw

h40
[m/s2]

speed of sound (acoustics) Bogoliubov sound velocity speed of sound (thin film)

c =
√
γRT [m/s] c =

√
gBEC · ρ0/M2[m/s] c3 =

√
g · h0 [m/s]

fixed wall boundary fixed wall boundary free boundary

~u · ~n = 0 ~v · ~n = 0 ~v · ~n = 0

fixed pressure boundary fixed density boundary fixed boundary

p = p0 η = 0 η = 0

continuity equation (acoustics) continuity equation (BEC) continuity equation (thin film)

α̇ = −ρ0
~∇ · ~u− ~u~∇α η̇ = −ρ0

~∇ · ~v − ~v~∇η η̇ = −h0
~∇ · ~v − ~v~∇η

linearized Euler (acoustics) linearized Euler (BEC) linearized Euler (thin film)

~̇u+ (~u · ~∇)~u = −γRT
ρ0

~∇α ~̇v + (~v · ~∇)~v = − 1
M
~∇(U + η

M
gBEC) ~̇v + (~v · ~∇)~v = −g~∇η

Table C2: acoustics, sound dynamics in a Bose-Einstein condensate in the Thomas-

Fermi limit at zero temperature, and third-sound dynamics on a helium thin film. As

in table C1, a two-dimensional system is described.

by choosing the ground - boundary condition in COMSOL [85]. In order to model a

quantized circulation n × κ around a topological defect in the structure, the floating

potential boundary condition with built in charge Q = n × κ must be chosen. This

boundary condition enforces an electric field orthogonal to the boundary everywhere

(due to the equal potential on the boundary), as well as the condition:∮
~D · ~n dl = Q. (D.1)

Upon the substitution of Eq.(8), this corresponds to a superfluid flow always parallel

to the topological defect boundary (i.e. no fluid inflow or outflow), and the quantized

circulation condition:∮
~v · d~l = nκ (D.2)
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Appendix D.2. Notes on implementation in COMSOL R© multiphysics

In the following we describe how superfluid helium thin film can be modelled using the

FEM solver COMSOL R© multiphysics 5.0.

A 2D model is set up. The Electrostatics(es) module is used to simulate vortices

and a stationary study is created. The resonator outer boundary is set to ground. The

circulation quantum κ is defined with adjusted SI-units ( m
s2
→ C

m
). At each position

where a clockwise vortex is to be modelled, a line charge (out-of-plane) of QL = κ is

inserted. A counter-clockwise vortex can be modelled by replacing κ→ −κ.

To model third sound, the Aeroacoustics → Linearized Euler, Frequency

Domain(lef) module is added and a Eigenfrequency step is included in the study. In the

first, stationary, study step, only the electrostatics interface is solved for, whereas in the

second step the Eigenfrequency solver is applied to the acoustics interface. Parameters

ρsf , Avdw, h0 and g = 3αvdwh
−4
0 [50] are defined to set the superfluid density (145 kg

m3

for superfluid helium [86]), the Hamacker constant of the substrate (2.6 · 10−24 m5

s2
for

silica [63]), the film thickness and the linearized Van-der-Waals acceleration, respectively.

The product RTγ = c2 is set to g · h0 for a uniform superfluid film. Alternatively, a

spatially varying function can be defined to reflect a non-uniform film thickness. The

boundary condition is set to either rigid wall or fixed pressure (see section Appendix

D.1).

In order to include vortices defined in the Electrostatics(es) module, a critical

velocity is defined (vcrit ≈ 60 m/s for superfluid helium [87]), and the acoustic

background flow field ~u0 is set to:(
u0,x

u0,y

)
=

(
Dy

−Dx

)
, (D.3)

(where D is the electric displacement field solved for in the first step stationary solver),

and truncated at u0,max = vcrit. This vortex background flow field is treated as constant

in time. The FEM-solver computes the velocity perturbation δ~u(t), corresponding to

the third sound mode, to the total flow: ~u(~r, t) = ~u0(~r) + δ~u(~r, t).

The gas density perturbation α(~r, t) calculated in COMSOL R© can be converted to

third sound amplitude by a normalization factor: N = α(~r, t)/η(~r, t). It is extracted

from

Epot,3(η) = kBTmode, (D.4)

where Tmode is the mode temperature. An analytical expression for the potential energy

of a third sound mode Epot,3 is given in ref. [63]. For the simple case of a uniform film

thickness and free boundary conditions the conversion is given by

N =
3Avdwρsf

2d4kBTmode

·
∫
d2~r ρ(~r). (D.5)

Tmode is the effective temperature of the sound mode, which when thermalized

with its environment corresponds to the fridge temperature. It can also be tuned
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through optomechanical laser heating/cooling [33], increased through laser absorption

heating [45] or electrical excitation [3].
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