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Abstract. Vorticity in two-dimensional superfluids is subject to intense research
efforts due to its role in quantum turbulence, dissipation and the BKT phase transition.
Interaction of sound and vortices is of broad importance in Bose-Einstein condensates
and superfluid helium [1-4]. However, both the modelling of the vortex flow field
and of its interaction with sound are complicated hydrodynamic problems, with
analytic solutions only available in special cases. In this work, we develop methods
to compute both the vortex and sound flow fields in an arbitrary two-dimensional
domain. Further, we analyse the dispersive interaction of vortices with sound modes
in a two-dimensional superfluid and develop a model that quantifies this interaction for
any vortex distribution on any two-dimensional bounded domain, possibly non-simply
connected, exploiting analogies with fluid dynamics of an ideal gas and electrostatics.
As an example application we use this technique to propose an experiment that should
be able to unambiguously detect single circulation quanta in a helium thin film.
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1. Introduction

Superfluidity in two dimensions, first systematically investigated in the 70’s in helium
thin films [5-8|, has sparked major research efforts in recent years, culminating in
the 2016 Nobel Prize, awarded for understanding the nature of superfluidity in two
dimensions [9-11]. The superfluid phase transition is native to a broad variety of
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physical systems, such as two-dimensional Bose-Einstein condensates [12,13], exciton-
polariton condensates [14,15], and topological condensed matter systems [16]. Quantized
vortices play a crucial role in these two-dimensional fluids, as their binding into pairs
enables the emergence of long-range order and thereby transition to the superfluid
phase. Understanding of vortex dynamics provides a pathway for controlling vortices
with sound, imaging vortex distributions, understanding quantum turbulence, and
engineering dynamical interactions between vortices and sound [2,17-19].

Vortex dynamics in strongly interacting superfluids is of significance to a range
of research fields: In topological condensed matter physics, it is responsible for the
superfluid phase transition and the onset of dissipation [9-11]; In astrophysics, the
observed glitches in the rotation frequency of neutron stars are thought to result from
vortex-unpinning events [20]; evidence for half quantum vortices (HQVs) has been found
in superfluid *He, where the HQVs in the A-phase of superfluid 3He are thought to host
Majorana-fermions, bearing promise for fault tolerant topological quantum computing
[21-23]; vortices in ®He are interesting as analogues of exotic topological defects [22,24]
— the broken-symmetry-core vortex in superfluid *He-B corresponding to Witten-
strings [25-27]; the HQV in the polar phase of superfluid *He corresponding Alice-
strings [28]; the spin-mass-vortex in *He-B, which has been proposed as an analogue for
composite defects appearing in some grand unified theories of particle physics and even
the standard model [29,30]. Therefore, the ability to determine the flow field induced by
an arbitrary configuration of vortices, on an arbitrary and perhaps multiply-connected
geometry is of broad importance, as is the ability to predict the strength of vortex-sound
interaction.

In the case of Bose-Einstein condensates, pressure- and temperature-waves
constitute the relevant sound eigenmodes (first- and second-sound, respectively), while
for helium thin films, both these modes of oscillation are suppressed due to the
incompressibility of the fluid and the clamping of the normal fluid component. Surface
excitations, so-called third-sound waves, become the primary form of sound wave [31].
Recently, both observation of temperature-wave propagation in a two-dimensional Bose-
Einstein condensate [32], and real-time measurement and control of third sound on a
superfluid helium thin film [33] have been demonstrated.

Quantifying vortex flow fields and their interaction with sound waves has sparked
substantial research efforts. Ellis et al. [3,34,35] electrically excited third-sound modes
to swirl up an ensemble of vortices in a helium thin film — however, despite elaborate
mathematical analysis [36], their modelling of vortex-sound interaction was limited to
simple, centered vortex ensembles on a circular resonator. In the case of BECs, a
plethora of analyses for vortex-sound interaction has been performed [4,37-44] and the
dispersive interaction has been quantified for centered vortices in simple trap geometries
[37,38].

In this work, we model vortex flow fields and the interaction of sound modes with
vortices, in a two-dimensional superfluid by exploiting analogies with other areas of
physics. We map vortex dynamics onto electrostatics, and superfluid hydrodynamics
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onto fluid dynamics of an ideal gas. This allows us to draw on technically mature finite-
element-modelling (FEM) tools available for these fields. We show how the interactions
of sound and the flow field of arbitrary vortex distributions can be computed using
these tools on any two-dimensional, not necessarily simply connected, domain. Thus,
our work provides a theoretical framework for controlling and imaging vortices, and for
engineering a dynamical interaction between sound and vortices.

As an example, we discuss the interaction of sound Bessel modes on a disk-shaped
domain with quantized vortices, which is relevant for a number of experiments on
superfluid thin films [3, 33,45, 46] and two-dimensional Bose-Einstein-condensates [32,
47,48]. The interaction induces splitting between otherwise degenerate sound modes
[3,37,38]. We show how the vortex number can be extracted from experimental
measurement of the splitting. Further, we present a perturbative analytic model,
approximating the FEM-simulation for circular geometries, which offers some intuitive
insight on the vortex-sound coupling mechanism.

Lastly, we focus our analysis to the prospect of detecting quantized circulation
in helium thin films. While vortices in Bose-Einstein condensates can be visualized
by optical snapshots [49], and pinned vortices in exciton-polariton condensates can
be visualized by optical interferometry, no such direct observation technique exists
for helium thin films: the vortex core is an Angstrom-size perturbation on an ultra-
thin film of transparent liquid, whose flow does not interact dissipatively with the
environment. Measurements on helium are important because, unlike exciton-polariton
condensates and most Bose-Einstein condensates, the atoms in superfluid helium are
strongly interacting, introducing dynamics that can not be modelled through the Gross-
Pitaevskii equation, and are not fully understood [50].

We finally propose an experiment where discrete steps due to an increase or decrease
in the number of circulation quanta could be observed for the case of a superfluid helium
film. We suggest a geometry where vortex pinning around an engineered topological
defect leads to experimentally observable quantized steps. Drawing on the finite element
model, we discuss how, in this geometry, the interaction with sound can be maximized,
so that these steps could be clearly resolved. This would enable the first direct detection
of quantized circulation in two-dimensional superfluid helium.

2. Sound-vortex interaction and their analogues

2.1. Sound in two-dimensional superfluids

Superfluid hydrodynamics is generally described by the continuity equation [3]:

dp -

= _V - (pv 1

DY (D), (1
which derives from mass conservation, and the Euler equation:

dv

— H (@ V)T=—gVp+C, (2)
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which derives from Newton’s second law (momentum conservation). In the case of
superfluid helium thin films, v is the superfluid flow velocity, p — h is the film height,
g = 3“,1% is the linearized Van-der-Waals acceleration [31,50], and C' = 0. In the
case of Bose-Einstein-condensate hydrodynamics in the Thomas-Fermi-limit at zero
temperature [51,52], ¢ is again the flow velocity, p is the density, g — gsrc/M? describes
the coupling strength, where M is the mass of an individual atom contributing to the
condensate, gggc the atom-atom coupling, and C' = —VU /M describes the trapping,
with U being the extended potential [51] (see Appendix, table C2).

We assume small perturbations in the density (BEC) or film height (helium), ,
from an equilibrium pg, p(7,t) = po + n(7,t) with n < po. Eqgs (1) and (2) respectively
become:

i=—pV 7 —TVn, (3)
and
U+ (7-V)o=—gVn+C, (4)

where we used the chain rule on the r.h.s. in Eq. (2). Substituting g — ¢ = yRT/po,
where R is the specific gas constant, T the gas temperature and ¢ the speed of sound,
we find that the above equations are the linearized Euler and continuity equations,
describing small amplitude sound waves in an ideal gas in the isentropic limit [53] (see
Appendix B for derivation). This allows us to model them using the Aeroacoustics
— Linearized Euler, Frequency Domain (lef) module in COMSOL, with appropriate
boundary conditions (see Appendix D.1). This provides the sound eigenmodes for an
arbitrary bounded geometry. Examples of eigenmodes on a circular and an irregularly
shaped two-dimensional resonator with free (‘Neumann’) boundaries are shown in
Fig. 1(a) [46] (see Appendix D.1). In this work, we analyse vortices and sound modes in
two-dimensional domains, as this applies to experiments [1,3,46] and allows a qualitative
discussion of the interaction. However, by choosing the appropriate dimension in the
FEM-simulation, the model could be generalized to three dimensions. The finite-
element-method allows us to add a background flow field, corresponding to the flow
generated by quantized vortices, and find the new sound eigenmodes in the presence of
that background flow.

2.2. Quantized vortices

A single vortex is described by a quantized circulation around a loop encompassing the
vortex core [54,55] :

f By dl = k. (5)

Here, k = 2wh/M is the circulation quantum. This ensures that the phase acquired
by the wave function upon propagation around any loop encompassing the vortex core



Figure 1: (a) Finite Element Method (FEM) modelling of the sound eigenmodes existing
within a circular (left) and an arbitrarily shaped domain (right), with free boundary
condition (see Appendix D.1). Left: Bessel (m=1; n=2) mode. Right: Lowest-frequency
eigenmode of the geometry. Color code represents the magnitude of the displacement.
(b) FEM modelling of the flow field generated by point vortices within the domains
shown in (a). Left: simple case of the flow field of an off-centered clockwise (CW)
point vortex in a circular domain (see Appendix A.1). Right: flow field due to two
CW and one counterclockwise (CCW) point vortices. Surface color-code and red arrows
show the vortex flow velocity, in log scale. White lines represent the streamlines of the
unrotated electric displacement field 5, which are potential lines for the superfluid flow.
(c¢) New ‘deformed’ (m=1; n=2) eigenmode of the circular geometry in the presence of
the background flow due to a large number of off-centered vortices located at a point
with radial offset of 0.7 R, where R is the resonator radius.

equals 27. v, denotes the vortex-induced velocity field. For the simple case of a point

vortex on a plane, the solution is:

5(r) = 5o, (6)
where €y is the unit vector in the tangential direction and r the distance from the
vortex core. In this work, we describe the quasi-static regime where the motion of
vortices during a sound oscillation period is negligible. This is valid in the limit of
pinned vortices [3,35,56] or low vortex densities where the velocity of the flow field
due to neighboring and image vortices is significantly less than the speed of sound. For
Bose-Einstein condensates at zero temperature, the sound velocity ¢ = h/M¢E, where
¢ is the healing length, equals the Landau critical velocity [52]. Therefore the quasi-
static approximation in Bose-Einstein condensates is valid if the separation between
neighbouring vortex cores is significantly larger than their core diameter. This condition
is typically fulfilled, and the sound velocity, with typical values of a few mm/s [57, 58]
is significantly higher than the background flow velocity caused by a typical ensemble
of vortices [1,2]1.

1 The orbit period T for a single vortex offset from the center of a circular resonator of radius R by

a distance x is T = % (R2 — x2). For superfluid helium thin film resonators with R ~ 10~° m, this
corresponds to typical Hz orbit frequencies compared to typical 10° Hz third-sound frequencies [33].



In comparison to Eq. (5), Gauss’s law of electrostatics in two dimensions reads:
7{ D-dii =Q, (7)

where D is the electric displacement field and () the line charge. By rotating the electric
displacement field and replacing it with the flow field v,

() () g

and substituting () — k, we retrieve the quantized circulation of the vortex defined in
Eq. (5), where ¥, = vy, €+, €,. This provides the analogy between electrostatics and
vortex flow [54]. A point charge is a source of divergence (source/sink) for the electric
displacement field D. As is known from potential flow theory, upon the permutation
shown in Eq. (8), a point charge becomes a source of quantized circulation. We model
these equations using the FElectrostatics(es) module of COMSOL, which allows us to
determine the vortex flow field on any two-dimensional geometry. Examples for vortex
flow fields on a circular and on an irregular geometry are shown in Fig. 1(b). Depending
on the number of vortices, their positions, and the resonator geometry, the sound
eigenmode shape may be significantly altered due to the presence of the vortices. Such
an example is shown in Fig. 1(c). Similarly, quantized circulation around a macroscopic
topological defect in a multiply-connected domain can be modelled as shown in section
4.

2.8. Sound-vortex interaction

We can understand the interaction of sound waves and vortices through the change in
the kinetic energy of a sound wave caused by addition/subtraction of a vortex. The
sound modes are orthogonal to vortex flow fields, which are fully defined by the rotation
around the vortex core (see Fig. 2 (b)). Therefore, the overlap of vortex- and sound
velocity fields is zero:

/17v-178dA:0, 9)
A

where A is the area of the domain and v, is the two-dimensional sound velocity
distribution. This appears to suggest that there is no coupling between the two flow
fields. However, interaction arises due to the change in film height (helium) or density
(BEC) associated with the sound wave. The interaction manifests in a splitting of sound
resonances due to the presence of vortices, and thus constitutes a dispersive (frequency-
shifting) interaction [59]. An example is shown in Fig. 2(c), where, due to increased
density /height on one side of the vortex, the increased kinetic energy due to velocity
addition on the right side of the vortex is not fully compensated by the reduction in
kinetic energy due to velocity subtraction on the left, resulting in a net increase in
energy due to the interaction.
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Figure 2: (a) Ilustration of the flow profile of sound in superfluid. (b) Streamlines
of a 2D point vortex (red dot) in the plane. (c) Vortex flow (red) and sound flow
(black). When sound and vortex flow fields are confined inside a resonator geometry
(see Fig. (Al)), interference effects arise. Destructive interference (left) and constructive
interference (right), in the presence of a mode-induced height gradient, causes an
interaction between vortex and sound. The vertical axes in (a) and (c) can refer to
density in a Bose-Einstein condensate, or the film height in a superfluid helium thin
film.

We use Eqgs (3) and (4) to calculate the new eigenmodes of sound in the presence
of the time-independent background flow 7,, assuming a stationary configuration of
vortices, with flow field #,(7). In this case, the total flow velocity is (7, t) = ¥, () +
Us(7, 1), where ¥ is the flow field associated with the sound eigenmode. The interaction
of persistent currents with sound modes has been quantified for simple, centered vortex
distributions on a disk-shaped resonator in superfluid helium thin films [3,36] and for
centered vortices in different trap shapes in Bose-Einstein-condensates [37,38], but until
now there has not been a consistent approach for modelling of a non-trivial vortex
distribution in a non-trivial resonator shape, or for multiply connected domains. We
confirm the accuracy of this finite element based approach through the comparison
with an analytical expression derived for third-sound-vortex interactions on a circular
resonator (see Appendix A).

3. Results

To give an experimentally relevant example, in the following we study the interaction of
a quantized vortex with sound modes in a disk-shaped resonator with a free (‘ Neumann’)
boundary condition (see Appendix D.1). This analysis is applicable to geometries used in
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superfluid helium experiments [33,45,46] with a microtoroidal optomechanical resonator
of R ~ 30 pm radius (see Fig. 3(a)), those of refs. [3,56,60,61], and also experiments
with two-dimensional Bose-Einstein-condensates, which are confined by a hard-walled
trap [1].

Regarding the experimental readout of sound modes, in experiments with helium
thin films, the Brownian motion of third sound waves, even at millikelvin temperatures,
is high enough to be resolved experimentally in real time [33]. Alternatively, the
amplitude of third sound can be tuned by laser heating or cooling [33], amplified by
optical absorption heating [45], or electrically excited [3]. For Bose-Einstein condensates,
collective modes can be excited by perturbing the condensate, locally exceeding the
critical velocity [62].

Solutions of the wave equation on a circular resonator are Bessel modes of the first
kind. They are fully quantified by their azimuthal (m > 0) and radial (n > 1) node
counts. Modes with m # 0 can be decomposed into opposite direction travelling waves,
that, in the absence of circulation, are degenerate. The presence of a vortex lifts the
degeneracy, shifts the mode co-rotating with the vortex flow to a higher frequency, and
the counter-rotating mode to a lower frequency (see Fig. 3(b)). This frequency splitting
Af is experimentally resolved if it is larger than the decay rate I' of the Bessel mode. As
the radial distance of the vortex from the center of the disk, r,, increases, the splitting
reduces. Firstly, this results from the lower total energy of the vortex flow field as the
vortex core approaches the boundary. Secondly, from symmetry arguments the overlap
between sound and vortex flow fields is maximized for a centered vortex. The radial
dependence of the mode shifts is plotted for the (m,n)=(1,8) free-boundary-condition
Bessel mode in Fig. 3(c). Each point corresponds to one result of the FEM-simulation,
as the vortex is stepped outwards from the center. As the vortex reaches the outer
boundary, the splitting vanishes.

We then compare the results from the FEM-model to the perturbative analytical
approach derived in Appendix A. We find that the two approaches agree reasonably
well, with the discrepancy always less that 10% of the maximal splitting at r, = 0 (see
Fig. (A3)). We ascribe the difference to a vortex-induced change in third-sound mode
shape due to the nonlinear (7- V)7 term in Eq. (4):

(TN = (T, - V)T, + (T, - Vs + (T, - V)T, + (T, - V). (10)

The analytic perturbation theory neglects all of these terms. The FEM model neglects
only (7, - V), which is a requirement to obtain eigenmodes for the sound waves. This
approximation is justified in the small sound amplitude limit n < py, where the sound-
induced superfluid flow velocity v, (see Eq. (A.4)) is small compared to the vortex flow
velocity v,.

Fig. 3(d) shows the splitting per vortex as a function of vortex radial position
for four different Bessel modes. Critically, the presence of a vortex affects each Bessel

mode in a unique fashion. Leveraging this unique fingerprint, the work presented here
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Figure 3: (a) Schematic of a microtoroidal resonator of radius R = 30 pum covered with
a superfluid helium thin film, with one quantized vortex offset from the disk origin. The
red dot indicates the vortex core. (b) Illustrated frequency splitting of a Bessel mode
due to the presence of a vortex. (c) Frequency of the co- and counter-rotating (1,8)-
Bessel mode, with one quantized vortex on the resonator, as a function of radial vortex
position. (d) Frequency splitting dependence of (1,3), (1,5), (1,8), and (5,4) third-sound
modes on the radial offset of the vortex from the disk origin. Spatial profiles of the
modes are shown as insets. (e) Displacement amplitudes of modes shown in (d) as a
function of radius. Inset: annular region cut out by a circle, with its radius defined by
the vortex position - whose interaction with the vortex accounts for the majority of the
splitting (see text). All plots use free boundary condition for the modes; each dot in (c)
and (d) represents the result of a FEM-simulation.

enabled both the number and the spatial distribution of vortices in a cluster to be
extracted independently, by tracking several sound modes simultaneously [46].

One conceptual result of the perturbative analysis is an expression for the frequency
splitting that depends only on the profile of the Bessel mode and the radial position of
the vortex, and is independent of the details of the vortex flow field. In the case of a
single vortex the expression is:

km [t (r)
A=t e T (11)
Jo drrn?(r)

where m is the Bessel mode azimuthal number, r, is the radial position of the vortex,
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and n(r) = Jp (Cm,n %) is the radial displacement profile of the Bessel mode. J,, is
the Bessel function of the first kind of order m, and m and n are respectively the
azimuthal and radial mode orders, (., is a frequency parameter depending on the
mode order and the boundary conditions [63]. As vortex flow fields are subject to
linear superposition, we obtain the total splitting simply by adding contributions from
single vortices: A fiotal = >_; Afi. An interpretation of this result is that the splitting
introduced by a vortex at position r, is equal to the interaction energy between a
centered vortex (r, = 0) and a sound wave in the region of the disk with radius greater
that r,. So, in some sense, only the fraction of the sound wave at radius larger than
the radial position of the vortex core contributes to the splitting. This explains why the
splitting per vortex drops rapidly with r, for low m, high n order sound modes whose
kinetic energy is located close to the center of the disk, while the splitting is sustained
at higher radii for higher m, lower n order modes which are more radially extended.

4. Requirements for detection of single vortices/circulation quanta

In this section, we investigate the feasibility of observing the quantization of circulation
in two-dimensional superfluid helium due to the shift in sound frequencies induced by the
addition/subtraction of a single vortex. Remarkably, while quantized vortices are central
to the behavior of two-dimensional superfluids, they have yet to be directly observed in
two-dimensional helium. The experimental challenge is significant: the normal-fluid core
of a vortex in superfluid helium-4 is roughly one Angstrém in diameter [50], the thickness
of a superfluid helium film is typically less than 20 nm, and the refractive index of liquid
helium is close to that of vacuum (ngy. ~ 1.029). Combined, these characteristics prevent
direct optical imaging, as can be performed in Bose-Einstein condensates [48,64]. In
bulk helium, many imaging techniques have relied on the use of some kind of tracer
particle [65-67], such as, for instance, micrometer-sized frozen hydrogen crystals. These
scatter light and are pulled in to the vortex core, enabling, for example, the recent
observation of Kelvin waves [67] in bulk. Naturally, such an approach is significantly
more difficult in two-dimensional films due to their few-nanometre thickness.

In order for the vortex-induced frequency splitting Af (Eq.(11)) experienced by a
third-sound wave [3,60] to reveal quantized steps, several challenges must be addressed.
First, in order to be resolvable, the splitting should be larger than the linewidth of
the third-sound resonances, Af 2> T', as shown in Figure 3(a). Second, any motion
of vortices on the resonator surface, as we experimentally observe elsewhere [46], will
lead to a continuous evolution of the splitting due to the continuous nature of the
splitting function Af(r,), see Figure 3(c), which may mask the quantized nature of the
circulation.

The first challenge can be met by engineering devices that are sufficiently small,
which maximizes Af by increasing the vortex-sound coupling, and by controlling
dissipation in these devices in order to reduce I'. This can be achieved, for instance,
by engineering a smooth resonator that is decoupled from its environment by a small
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a b
Q
Figure 4: Topological defect in a disk-shaped resonator geometry. (a) Top-view of an

annular-shaped superfluid optomechanical resonator [63]. Blue shade represents the
disk, while the dashed grey region symbolizes the device’s pedestal. Red contours €2,
and € represent closed loops around holes in the resonator. (b) Cut-view through the
dashed green line in (a), illustrating how contour €2; can be continuously deformed and
collapsed, while contour (25 cannot and encloses therefore a real topological defect. (c)
Single-spoked annular disk geometry [73], whose central hole is topologically identical
to that enclosed by contour (2.

connection point [33], or through careful choice of the resonator substrate material [68].
Indeed, Af ~ I' has been recently reported experimentally using microscale on chip
optical cavities [46]. A solution to the second challenge is to constrain the position
of the circulation around a macroscopic topological defect engineered on the surface
of the resonator. For instance, if we replace the topological defect naturally formed
by the normal fluid core (of radius ag) of a superfluid vortex by a microfabricated
hole of radius R > ag, the maximal velocity due to the quantized circulation becomes
som K 5o (see Eq. (5)). This effectively clips the high velocity region of the flow
and is thus energetically favourable. The circulation will then preferentially accumulate
around this manufactured defect, up to large values of kK = h/my,, as has been observed
in the spinning up of bulk helium in an annular container [69, 70]. The quantization
of the circulation then manifests as quantized values of the splitting experienced by
third-sound modes confined to the surface of the resonator.

This approach is in essence a two-dimensional analogue of Vinen’s experimental
technique for the first observation of circulation quanta in bulk helium [71,72], where
circulation trapped around a vibrating wire lifted the degeneracy between the wire’s
normal modes of vibration. In Fig.(4), we propose a practical realization of such a
device based on a circular whispering-gallery-mode geometry, as used in our previous
work [33,45]. We utilise the FEM-simulation to design a domain that maximises the
splitting A f, consisting of a single-spoked annular geometry [73] (see Fig. 4(c)).

Next we calculate the superfluid flow field resulting from quantized circulation
about the central topological defect, as shown in Fig. 4(c). For clarity, we assume
that this pinned circulation is the only source of circulation on the structure, i.e. there
are no vortex cores on the domain. This is calculated through FEM simulation using
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the ‘floating potential’ boundary condition for the inner boundary, which enforces both
the prescribed circulation strength and parallelism of the flow to the boundary (see
Appendix D.1 for more details). The results are shown in Figure 5(a). The flow is
essentially confined to the outer annulus, with negligible flow up and down the spoke
and in the central disk. This can be understood by considering the closed contours 1
and 2 which both enclose the central hole. The circulation around both contours must
therefore be equal (see Eq. (5)), implying negligible additional circulation along the
extra path contained in contour 1.

Figure 5(b) shows an example of a third-sound mode of this spoked resonator
(which becomes the (1, 2) eigenmode of a circular resonator as the central hole gets
vanishingly small). The presence of the spoke, which connects the annular outer ring
to the device pedestal, lifts the degeneracy between the two normal modes, even in
the absence of circulation. The mode that has a stronger interaction with the spoke
(bottom) experiences an effectively larger resonator and therefore has a lower resonance
frequency.

In Figure 5(c), we show how this native geometric splitting [60] affects the third-
sound mode splitting as a function of the circulation around the central hole. Each
black dot represents a finite element simulation of the splitting between the high and low
frequency eigenmodes shown in Figure 5(b), as a function of the number of circulation
quanta around the central defect. This total splitting can be well reproduced through
an analytical expression of the form [35]:

Stotal = \/ Sgirc + Sgeo' (12)

where sz, = 700 Hz is the native geometric splitting for this device (dashed orange
line), Scire = N X Scire0 the total circulation-induced splitting with N being the number
of circulation quanta and s o is the splitting per quantum. The solid red line represents
Stotal, as given by Eq. (12). In Figure 5(d), we plot the experimentally relevant
parameter, which is the splitting increment due to each additional circulation quantum,
as a function of the number of circulation quanta already present around the defect.
This shows that the geometric splitting due to the spoke (or any unwanted deviation
from circularity) will mask the influence of the circulation-induced splitting for small
values of the circulation quanta, and reduce the visibility of the steps. For larger values
of the circulation, the size of the steps will asymptote towards the value s, o = 54 Hz,
as the appropriate normal mode basis gradually shifts from orthogonal standing waves
to counter-propagating waves. Such a large quantized circulation can be experimentally
achieved by creating a strong superfluid flow, locally exceeding the critical velocity
— for instance by local evaporation of superfluid or by strong driving of third-sound
modes [33,45,46]. Alternatively, a sub-critical flow can be used to create a high persistent
current by reorganizing pre-existing vortex pairs through the Magnus force [3]. In Bose-
Einstein condensates, vortices can be created in high numbers by laser stirring [74].
We show that the proposed device would yield quantized steps in the third-sound
mode splitting on the order of 50 Hz, a value within reach of current experimental



13

resolution [33,46]. Note also that since the strength of the vortex-phonon interaction
scales inversely with resonator area (see Appendix A.3) the magnitude of the splitting
can be greatly enhanced by going towards miniature third-sound resonators. This is
illustrated in Fig. (A2), which shows the splitting per centered vortex on the (1,2)
Bessel mode as a function of resonator radius. While only of the order of milli-Hertz
for early cm-scale capacitively detected third-sound resonators [60,61] (red and orange
dots), it reaches tens to hundreds of Hz with microtoroidal resonators [33,46] (blue dot),
and would attain tens of kHz with micron-radius resonators [75-77] (black dot).

5. Conclusion

We have developed finite-element modelling tools to compute the interaction between
any vortex flow and any sound wave, in arbitrary and potentially multiply-connected
two-dimensional domains. This capability offers great versatility, applicable to both
BEC superfluids and to thin-film superfluid helium. There is a need for numerical
techniques to determine vortex and sound velocity fields and their interactions. In both
cases, analytical solutions for the vortex flow field only exist if the domain exhibits a high
degree of symmetry. Even if such solutions exist, when departing from simple geometries
like a disk, the implementation of the method of images in order to cancel the normal
component of the vortex flow on the resonator boundary [78] becomes challenging, and
one needs to rely on conformal mapping techniques [1,79]. For multiply-connected
domains, solutions often require an infinite series of images as the domain possesses two
or more boundaries, and analytical solutions are only available for simple limit-cases
such as a centered annular domain [70].

We verify the validity of our approach by comparing its results to a perturbation
theory analysis which we derive in the analytically tractable case of a circular resonator
geometry. We derive in this case a useful simple analytical formula, which can be
used to compute the vortex-sound coupling for arbitrary configurations of vortices on
a disk, without requiring the vortex flow field. Understanding precisely how superfluid
vortices and persistent currents couple to sound waves — at the level of a single vortex
or circulation quantum — is a crucial capability to shed light on the physics of strongly
interacting superfluids, and perform continuous non-destructive measurements of vortex
dynamics in these systems [46].

The modelling techniques presented here may help shed light on the validity of
phenomenological models such as the point-vortex model [80,81] in superfluids, as well
as further our understanding of quantum turbulence [2,17-19] and energy dissipation
in superfluids [56,82,83].
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Appendix A. Analytical derivation of the vortex-sound coupling

Appendix A.1. Analytical description of the point vortex flow field v,

The streamfunction ¥ of a point vortex of strength x in a 2D plane is ¥ = —5= In (7).
The streamfunction ¥ for the the well-known problem of a point vortex inside a circular
domain [78], is given in cartesian coordinates by:

@:_%(m<¢@—xy+w)—m<¢@—xﬁ+w)> (A1)

Here X, is the radial offset of the vortex (along the x axis), and X, = % is the

radial coordinate of the opposite circulation image-vortex required to enforce no flow

accross the resonator boundary [78]. From the streamfunction W, the vortex velocity
components are given by:
ov ov
Vpw = —; and Upy = ——— A2
oy Y Ox (A.2)
Using Eq.(A.2), we plot in Fig. Al(a) the flow streamlines of a vortex offset by R/2
inside a circular resonator of radius R.

Appendix A.2. Analytical description of the sound flow field v3

In the following, for simplicity we derive the analytic expressions for helium thin
films (i.e. third-sound waves). However, the analysis can be applied to BECs with
a straightforward replacement of variables (see Appendix C).

The complex surface displacement amplitude 7 of a travelling superfluid third-sound
wave (or alternatively the sound-induced density fluctuations for a BEC) in a circular
domain are given by [63]:

0 (0,8) =10 T (Gungs ) €0, (A.3)
The associated superfluid flow speed v3 is given by:
: 2
ics

Q ho

Uy = £—2Vn (A.4)
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Figure Al: (a) Streamlines of @, (7) for a CW vortex (green dot) offset from the origin
(red dot) in a circular domain. (X; = 0.5R; Xy = 2R). (b) Black arrows represent the
instantaneous superfluid flow field ¥ ('), for a clockwise-rotating (m = 1; n = 2) Bessel-
mode with free boundary condition. Surface plot shows the associated surface deflection
1 (7) (color code: red = positive, blue=negative). CW nature can be seen by noticing
the fluid starting to accumulate ahead of the red peak, where V- ¥ < 0. The velocity
field is positive under the peaks, negative under the troughs, and irrotational, 7.e. with
$ U dl = 0 for all contours inside the superfluid. (c) Vector field of @ (7) x (7). While
from symmetry one sees that [[ @5 - ¢, = 0, multiplication by the surface deflection
profile 7 (7) leads to a non-zero energy shift of the CW/CCW third-sound waves, see
Eq.(A.7).

with ‘+” and ‘-’ signs respectively corresponding to the CW and CCW travelling cases, as
in Eq.(A.3). Note that while the motion of a solid circular membrane would also be given
by Eq.(A.3), its velocity would be different to Eq.(A.4), leading to dramatically different
effective mass scalings [63]. The surface displacement profile & () and instantaneous
velocity field R (U5) are plotted in Fig. Al(b), for a CW (m = 1, n = 2) Bessel mode
with free boundary conditions. While such a third-sound mode flow is irrotational and
therefore not associated with any circulation (§ 7 - dl = 0 for any closed loop inside the
superfluid), it is associated with a net mass flow (in the CW case, there is more fluid
moving clockwise under the wave peak (red) than counter-clockwise under the trough
(blue), and similarly there is net CCW fluid motion for the CCW mode). It is this net
mass flow which couples to the vortex field, and results in a higher kinetic energy for
the sound mode travelling in the same direction as the vortex flow. This argument is
developed in the analytical splitting calculation detailed below.

Appendiz A.3. Analytical description of vortex-sound coupling

Here we derive an analytical expression for the frequency splitting experienced by a
third-sound mode due to a vortex inside a circular resonator, and show good agreement
with the results of the FEM simulations shown in Figure 3. This is a valid approximation
to the FEM-model if the change in mode shape due to vortices is small.

The kinetic energy difference AFE (t) between a sound wave moving with- or against
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the flow of a quantized vortex is given by:

1 2r  rR ho+n(r, 0,t) ) )
spw=zof [ (15 (7, ) + 5 (A2 = 117 (7, £) — 7 (P)P) rdr 48 d=(A.5)

0 =0
This general expression works for any sound mode and any vortex position. Making the
reasonable assumption that v3 and v, are independent of z, as the inviscid nature of
the superfluid precludes any in-plane vorticity and does not require cancellation of the
horizontal velocity at z=0 (no-slip boundary), Eq.(A.5) becomes:

2w R
AFE(t) = 2p/ / U3 (r,0, t) - U, (r,0) (ho +n(r,0,t)) rdrdd (A.6)
=0 Jr=0

Since both vs, and v,, as well vs, and v,, are functions of 6 of different parity (see
Figure A1), [[ ¥5 -, =0, and equation (A.6) becomes:

27 R
AE(f) = 2p / / B (1,0,8) - &, (r, 6) n (r, 0, ) r-dr- 0 (A7)
6=0 Jr=0

This is essentially a form of surface-averaged Doppler shift, weighted by the displacement
amplitude n of the mode. Next, we consider the time-averaged energy difference (AE),
averaged over a sound oscillation period T:

1 T 1 T 1 T
(AE) = ?/ AE (t)dt = Zp//erdrde (U”’"T/ vgrndt)+<v09?/ vggndt) (A.8)
0 r 0 0

where we have broken down v3 and v, into their radial and angular components,
respectively vz, and vsg, and v,, and v,g. From Eqgs.(A.3)&(A.4), we note that vs,
and 7 are out-of-phase, while v3y and n are in phase. The first integral over time in
Eq.(A.8) reduces therefore to zero, while the second integrates to 5 [vsg| |n|. We therefore
get from Eq.(A.3) and Eq.(A.4):

2 R J2 r 27
(AE) = P / rdr mpy —— B (Gnns) / Vg db (A.9)
Qho Jr—o r 6=0

which we rewrite, with 7 () = 1o J, ((m,n }%), as:

2 R 2m
pmcs dr
AE) = — vo T do Al
(AE) Qhy /rzo r (7’)/9:0 ot (A.10)

We notice here that the integral over 6 corresponds to a closed contour integral § @, - dlq7
where the contour is a circle of radius r centered at the origin. From Eq.(5), we know
that the value of this contour integral is zero if it does not enclose the vortex core, and
k if it does. The transition occurs for r = offset, the radial offset of the point vortex.
We can therefore rewrite Eq.(A.10) with a modified radial integration lower bound:

2 R
pmcesK dr
AE) = — A1l
< > Q hO /T:Offset r K (r) ( )

Since for a harmonic oscillator E is proportional to 2, A—LE = 2% and the splitting A f
(in Hz) equals:
Q AFE
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Figure A2: (a) FEM simulation of frequency splitting of the (m = 3, n = 1) Bessel mode
due to a centered vortex, whose charge is increased from x to > 200 &, displaying linearity
over that range. (b) Splitting per centered vortex for the (m = 1, n = 2) Bessel mode
with free boundary conditions, as a function of resonator radius. Experimental devices
shown in red [61] and orange [60] correspond to cm-scale capacitively detected third-
sound waves. Blue dot corresponds to an optical WGM microtoroid resonator [33,46].
Black dot shows two additional orders of magnitude improvement over current state-of-
the-art can be achieved by going to micron-radius WGM resonators [75, 76].

with the kinetic energy E of the third-sound mode, for m > 0, given by [63]:

1

2 (R
E = §/p02 (7)d® () = 7;203/0 n* (r)rdr (A.13)

Combining Eqs.(A.10) and (A.13), we recover the result shown in Eq.(11) of the main
text:

Af: Km o};set% 2(T)
22 fORdrrn2 (r)

We note that, as expected, the splitting does not depend on the superfluid parameters

(A.14)

(film thickness, density), and that it is linear in vortex flow field (see Eq.A.6), such
that the splitting obeys the superposition principle, whereby the splitting due to
an ensemble of vortices is equal to the sum of the splittings per vortex calculated
individually. The result Eq.(A.14) holds for both superfluid helium thin films and Bose-
Einstein condensates, with 7 being the film thickness perturbation/density perturbation,
respectively. We numerically verify this result in the FEM simulations, where linearity
is generally maintained up to large vortex charges on the order of ~ 10% k, as shown in
Figure A2(a) and (b). Note that Eq.(A.14) does not diverge as the vortex offset tends
to 0, as 7 (0) = 0 for all m > 0 Bessel modes. Interestingly, due to the contour-integral
identity used in Eq.(A.10), the final result does not require any knowledge of the vortex
flow field v,.
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Figure A3: Comparison between the results of the FEM simulations and the analytical
approach (Eq.(A.14)) for four different Bessel modes labelled by their (m,n) order,
showing good agreement between both methods without any scaling parameter.
(Resonator dimension R = 30 microns, fixed boundary conditions). Some small
quantitative differences between both solutions remain. For instance from Eq. A.14, the
analytical splitting has to be a monotonically decreasing function of the radial offset,
while the FEM calculation shows some regions of increased splitting with radial offset.
We ascribe these differences to vortex-induced changes in the eigenmode shape (see
Figure 1(c)), which are not taken into account in the perturbative analytical approach.

Appendix B. Derivation of linearized equations for an ideal gas

For the ideal gas, mass conservation and momentum conservation read, respectively [53]:

dp -
— NV (pil B.1
LT (pa) (B.1)
and
di - 1=
bl TR VAT B.2
o + (4 - V)i pr, (B.2)

where (7, t) is the flow velocity, p is the gas density and p the gas pressure. Isentropic
flow (i.e. the gas is in thermal equilibrium at all times) for an ideal gas implies [53]:

p=~RTp and ¢*=~RT, (B.3)
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where R is the specific gas constant, 1" is the gas temperature and c is the speed of
sound. We insert Eq. (B.3) in Eq. (B.2) and linearize for small density fluctuations,
p(F) = po + a(F) with a < pg, and recover Egs. (3) and (4) in the main text.

Appendix C. Comparison tables

Here we show how quantities and equations from 2D-electrostatics can be mapped to
vortex-induced flow fields, and how acoustics of an ideal gas is mapped to third-sound

dynamics.
2D-electrostatics vortices
electric displacement field velocity field
D(7)[C/m? Uy () [m/s]
electric line charge circulation quantum
Q[C/m] k[m? /s]
Gauss’s law vortex flow equation
$D-diit = Q $7,-dl =x
perfect electric conductor (ground) | tangential flow boundary
Dxi=0 v, =0

Table C1: electrostatics and vortex flow field. The system is invariant under z-
translation, hence we use units and equations in two dimensions.

Appendix D. Supplementary information

Appendiz D.1. Boundary conditions

In order to solve differential equations on the surface of a two-dimensional resonator,
constraints at the boundary have to be specified. Depending on the type of confinement
provided by the resonator, the boundary for third sound can be described either by
a fixed (‘Dirichlet’) or a free (‘Neumann’) boundary condition. A fixed boundary
condition 7 = 0 allows flow in and out of the resonator and the film height at the
boundary is fixed to the equilibrium film height. The free boundary condition v3-7 = 0,
where 77 is the normal vector on the boundary, allows film height fluctuations at the
boundary and prohibits flow in or out of the resonator. In COMSOL, for an ideal gas,
the free boundary condition corresponds to a rigid wall, where volume is conserved and
the gas pressure can oscillate freely at the boundary. The fixed boundary condition
corresponds to fixed pressure, where the gas pressure is fixed at the boundary and the
gas can freely flow in and out of the domain [84]. The vortex flow is tangential to
the boundary, v, - 7 = 0. In the electrostatics analogue, this translates to an electric
field which is exactly perpendicular to the boundary, with no tangential component.
This corresponds to a perfect electric conductor at the boundary and can be realized
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third-sound dynamics

density perturbation
a(r, t) [kg/m?’]

density perturbation
n(7,t)[kg/m?’]

third-sound amplitude
n(r,t)[m]

static density

static density

unperturbed film height

po[kg/m?] polkg,/m?] ho[m]
background flow irrotational vortex flow irrotational vortex flow
u(7)[m/s] vy () [m/s] vy () [m/s]

irrotational flow velocity

du(r, t)[m/s]

sound flow velocity
Uy (7, 1) [m/s]

third-sound flow velocity
Us (7, t)[m /]

static pressure

polJ/m?]

atom-atom coupling
geEC[Jm?]

linearized VAW coeflicent

g = S m/s?

speed of sound (acoustics)
¢ =+/vRT [m/s]

Bogoliubov sound velocity

¢ = +/gsrc - po/M?[m/s]

speed of sound (thin film)
c3 =+/g-ho [m/s]

fixed wall boundary

fixed wall boundary

free boundary

u-n=0 v-n=0 v-n=0
fixed pressure boundary fixed density boundary fixed boundary
P =10 n=_0 n=0
continuity equation (acoustics) continuity equation (BEC) continuity equation (thin film)
&= —pyV - i — iV« 0=—pV-0—0Vn i=—hoV -7 —oVn
linearized Euler (acoustics) linearized Euler (BEC) linearized Euler (thin film)
i+ (i - V)i = —2LVa T+ (T V)T = —&V(U + L ggrc) U+ (0-V)T=—gVn

Table C2: acoustics, sound dynamics in a Bose-Einstein condensate in the Thomas-
Fermi limit at zero temperature, and third-sound dynamics on a helium thin film. As
in table C1, a two-dimensional system is described.

by choosing the ground - boundary condition in COMSOL [85]. In order to model a
quantized circulation n x k around a topological defect in the structure, the floating
potential boundary condition with built in charge Q = n x xk must be chosen. This
boundary condition enforces an electric field orthogonal to the boundary everywhere
(due to the equal potential on the boundary), as well as the condition:

fﬁﬁﬂ:@

Upon the substitution of Eq.(8), this corresponds to a superfluid flow always parallel
to the topological defect boundary (i.e. no fluid inflow or outflow), and the quantized

(D.1)

circulation condition:

fﬁ-df:n/ﬁ

(D.2)
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Appendiz D.2. Notes on implementation in COMSOL® multiphysics

In the following we describe how superfluid helium thin film can be modelled using the
FEM solver COMSOL® multiphysics 5.0.

A 2D model is set up. The FElectrostatics(es) module is used to simulate vortices
and a stationary study is created. The resonator outer boundary is set to ground. The
circulation quantum « is defined with adjusted Sl-units (% — %) At each position
where a clockwise vortex is to be modelled, a line charge (out-of-plane) of Q1 = k is
inserted. A counter-clockwise vortex can be modelled by replacing kK — —k.

To model third sound, the Aeroacoustics — Linearized FEuler, Frequency
Domain(lef) module is added and a Figenfrequency step is included in the study. In the
first, stationary, study step, only the electrostatics interface is solved for, whereas in the
second step the Figenfrequency solver is applied to the acoustics interface. Parameters
Psts Avaw, ho and g = 3avawhg” [50] are defined to set the superfluid density (145%
for superfluid helium [86]), the Hamacker constant of the substrate (2.6 - 10*2421—; for
silica [63]), the film thickness and the linearized Van-der-Waals acceleration, respectively.
The product RT7y = ¢? is set to g - hy for a uniform superfluid film. Alternatively, a
spatially varying function can be defined to reflect a non-uniform film thickness. The
boundary condition is set to either rigid wall or fized pressure (see section Appendix
D.1).

In order to include vortices defined in the Flectrostatics(es) module, a critical
velocity is defined (veir ~ 60 m/s for superfluid helium [87]), and the acoustic
background flow field uj is set to:

UQ,z o Dy
(2)-(%) o3

(where D is the electric displacement field solved for in the first step stationary solver),
and truncated at wg maz = Verit- This vortex background flow field is treated as constant
in time. The FEM-solver computes the velocity perturbation §(t), corresponding to
the third sound mode, to the total flow: (7, t) = o (7) + du(7,t).

The gas density perturbation a(7,t) calculated in COMSOL® can be converted to
third sound amplitude by a normalization factor: N = «(7,t)/n(7,t). It is extracted
from

Ep0t73(77) = kBTmodea (D4)

where T}04e 18 the mode temperature. An analytical expression for the potential energy
of a third sound mode E,u 3 is given in ref. [63]. For the simple case of a uniform film
thickness and free boundary conditions the conversion is given by

3Avdwpsf 2
N=———./]d ) D.
2d4k:BT’mode / " p(f’) ( 5)

Thode is the effective temperature of the sound mode, which when thermalized
with its environment corresponds to the fridge temperature. It can also be tuned
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through optomechanical laser heating/cooling [33], increased through laser absorption
heating [45] or electrical excitation [3].
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