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We describe a proposal for a new type of optomechanical system based on a drop of liquid helium
that is magnetically levitated in vacuum. In the proposed device, the drop would serve three
roles: its optical whispering gallery modes would provide the optical cavity, its surface vibrations
would constitute the mechanical element, and evaporation of He atoms from its surface would
provide continuous refrigeration. We analyze the feasibility of such a system in light of previous
experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-
scale drops of liquid He, evaporative cooling of He droplets in vacuum, and coupling to high-quality
optical whispering gallery modes in a wide range of liquids. We find that the combination of these
features could result in a device that approaches the single-photon strong coupling regime, due
to the high optical quality factors attainable at low temperatures. Moreover, the system offers
a unique opportunity to use optical techniques to study the motion of a superfluid that is freely
levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to
exploit the coupling between the drop’s rotations and vibrations to perform quantum non-demolition
measurements of angular momentum.

Introduction

Optomechanical systems [1] have been used to demon-
strate quantum effects in the harmonic motion of macro-
scopic objects over a very broad range of physical
regimes. For example, quantum optomechanical effects
have been observed in the motion of objects formed from
all three states of matter (solid [2], gas [3], and liquid [4]);
at temperatures ranging from cryogenic to room temper-
ature [5]; with effective mass as large as ∼100 nanograms
[6]; and with resonance frequencies ranging from kHz to
GHz. Despite rapid progress, a number of important
goals in this field remain outstanding, for example gener-
ating highly non-classical states of motion with negative
quasiprobability distributions or which violate a Bell-
type inequality (even without postselection); efficiently
transferring quantum states between microwave and op-
tical frequencies; and observing quantum effects in the
motion of objects massive enough to constrain theories
of quantum gravity [7]. Access to these phenomena may
be facilitated by devices with reduced optical and me-
chanical loss, increased optomechanical coupling, and in-
creased mass. In addition, new regimes and qualitatively
new forms of optomechanical coupling may be accessed
by developing systems in which the mechanical degrees
of freedom are not simply the harmonic oscillations of an
elastic body. In this work, we will show that a levitated
drop of superfluid helium will be a most promising plat-
form that combines many of these desired features and
offers novel possibilities.

To date, most optomechanical devices are realized by
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Figure 1. (a) Schematic illustration of a levitated helium drop
containing an optical whispering gallery mode (WGM), whose
optical path length is modified by the surface vibrations. (b)
Rotation of the drop leads to an equatorial bulge, which also
modifies the WGM’s path length.

using solid objects (e.g., mirrors, waveguides, or elec-
trical circuits) to confine modes of the electromagnetic
field, and ensuring that these confined modes couple to
the harmonic motion of a solid object. These devices’
performance is determined in part by the properties of
the solids from which they are formed. For example,
the material’s mechanical and electromagnetic loss are
important parameters, as is the material’s compatibility
with fabrication techniques. For this reason, high-quality
dielectrics are typically employed in devices using optical
fields, while superconductors are typically employed in
devices using microwave fields.
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Most solid-based optomechanical devices must be
placed in direct contact with their solid surroundings,
both to support them against Earth’s gravity and to pro-
vide thermal anchoring. This contact can negatively af-
fect the device’s performance, as it represents a route for
mechanical loss. It may also be problematic if the contact
is not able to provide effective cooling (i.e., to counteract
heating from electromagnetic absorption in the device),
as elevated temperatures tend to obscure quantum ef-
fects.

If the mechanical element is a solid object that is lev-
itated in vacuum (e.g., using optical or magnetic forces)
[8–15], the absence of direct contact can result in very
low loss for some mechanical degrees of freedom (partic-
ularly the object’s center-of-mass). However the absence
of direct contact also precludes effective cooling of the el-
ement. This is particularly important given the non-zero
optical absorption of conventional materials and the high
optical powers typically required for levitation and/or
read out of the object’s motion. As a result, solid objects
levitated in vacuum have operated at elevated bulk tem-
peratures (although some degrees of freedom may still be
cooled to very low effective temperatures).

In contrast to solid objects, atomic gases may be levi-
tated and trapped in vacuum at very low temperatures.
This is due to two important features of atomic systems:
first, the gas is heated only via the atoms’ spontaneous
emission (which can be minimized by using laser fields
that are far detuned from the atomic transitions). Sec-
ond, the atoms can all be kept cold by laser cooling
and evaporation. When a cloud of ultracold atoms is
trapped inside an optical cavity, its center-of-mass mo-
tion (or some collective mode of the gas) can detune the
cavity, leading to an optomechanical interaction [16, 17].
This interaction may be quite strong, as the small num-
ber of atoms can be compensated by the cloud’s large
zero point motion and by adjusting the detuning be-
tween the atomic transition and the cavity. Ultracold
atom-based optomechanical devices have achieved op-
tomechanical figures of merit and demonstrated quantum
optomechanical effects that are competitive with state-of-
the-art solid-based devices. However the effective mass
of atom-based devices is likely to remain several orders of
magnitude lower than solid-based devices, making them
less promising for foundational tests.

Recently, optomechanical devices that employ liquids
have been demonstrated. These can be realized by sup-
porting a drop of liquid [18] so that its free surface con-
fines an electromagnetic mode in the form of an opti-
cal whispering gallery mode (WGM). In this case, the
drop serves as both the optical cavity and the mechan-
ical element, as the drop’s surface oscillations tend to
detune the drop’s optical WGMs. Devices based on this
approach have been demonstrated at room temperature
and with the drops mechanically anchored (rather than
levitating). However, the relatively high mechanical loss

in room-temperature fluids has precluded them from ac-
cessing quantum optomechanical effects.

Liquid-based optomechanical devices can also be real-
ized by filling [19–22] or coating [23] a solid electromag-
netic cavity with a fluid. In this case only the mechanical
degree of freedom is provided by the fluid, for example
as a density wave or surface wave that detunes the cav-
ity by modulating the overlap between the liquid and the
cavity mode. This approach has been used at cryogenic
temperatures with superfluid 4He serving as the liquid
[20–24].

Liquid He has a number of properties that make it ap-
pealing for optomechanical devices. Its large bandgap
(∼ 19 eV), chemical purity, and lack of structural defects
should provide exceptionally low electromagnetic loss.
In its pure superfluid state, the viscosity that strongly
damps other liquids is absent. The mechanical loss aris-
ing from its nonlinear compressibility varies with temper-
ature T as T 4, and so is strongly suppressed at low T . In
addition, its thermal conductivity at cryogenic tempera-
tures is exceptionally large.

To date, optomechanical devices based on superfluid-
filled cavities have reaped some advantage from these
features (including the observation of quantum optome-
chanical effects [4]). However the need to confine the
superfluid within a solid vessel has undercut many of the
advantages offered by superfluid helium. This is because
direct contact between the superfluid and a solid object
provides a channel for mechanical losses (i.e., radiation of
mechanical energy from the superfluid into the solid) and
heating (due to electromagnetic absorption in the solid).

In this paper, we propose a new type of optomechan-
ical device that is intended to combine advantages from
each type of device described above. Specifically, we con-
sider a millimeter-scale drop of superfluid He that is mag-
netically levitated in vacuum (Fig. 1). Magnetic levita-
tion would provide high-quality optical WGMs and high-
quality mechanical modes by confining the optical and
mechanical energy entirely within the superfluid. De-
spite being levitated in vacuum, the drop would be able
to cool itself efficiently by evaporation, thereby compen-
sating for any residual heating.

In addition to offering these technical improvements,
this approach would provide access to qualitatively new
forms of optomechanical coupling. A levitated drop of
3He in its normal state would retain the low optical loss
and efficient cooling of the superfluid drop, but would
experience viscous damping of its normal modes of os-
cillation. However its rigid body rotation (which is not
directly damped by viscosity) would couple to the drop’s
optical WGMs. The coupling arising in such an “opto-
rotational” system is distinct from the usual optomechan-
ical coupling, with important consequences for quantum
effects.

Besides establishing a novel optomechanics platform,
the proposed system may also help address long-standing
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questions regarding the physics of liquid helium. For ex-
ample, a levitated drop of 4He may contain a vortex line
[25, 26] which deforms the drop shape and hence detunes
the optical WGMs, providing a probe of vortex dynam-
ics. Alternately, optical measurements of a levitated drop
could probe the onset and decay of turbulence in a system
without walls.

Most of the essential features of the proposed device
have been demonstrated previously, albeit in disparate
settings. These include: the magnetic levitation and
trapping of mm-scale and cm-scale drops of superfluid
helium [27, 28], the characterization of these drops’ sur-
face modes [29] for T > 650mK; the observation of evap-
orative cooling of He drops [30] in vacuum, and the ob-
servation of high-finesse optical WGMs in liquids such
as ethanol [31–33] and water [34] (at room temperature)
and in liquid H2 [35, 36] (at T ∼ 15 K). This paper
uses these prior results to estimate the optomechanical
properties of a levitated drop of liquid He, including the
possible coupling to rotational motion. The discussion
presented here is relevant for both 3He and 4He, except
where noted otherwise.

I. OPTOMECHANICAL COUPLING IN A
HELIUM DROP

We begin by discussing the vibrational modes of the
drop and deriving their optomechanical coupling to the
optical WGMs. Note that WGMs in spherical (and near-
spherical) dielectrics are discussed extensively in the lit-
erature [37], so we do not review their properties here.

A. Vibrational modes

The vibrational modes of a helium drop can be calcu-
lated by solving the linearized hydrodynamic equations
(Fig. 2). The angular dependence of each mode is given
by a spherical harmonic Yl,m(θ, φ) (where l and m index
the mode’s total angular momentum and its projection
on the z-axis). The radial dependence of each mode can
be written in terms of spherical Bessel functions jn(kr)
(where k is the mode’s wavenumber and n determines the
number of radial nodes). The physical nature of these
modes falls into two classes:

(i) Low-frequency surface modes (ripplons), whose
restoring force is provided by surface tension. These
have frequency ωl =

√
l(l − 1)(l + 2)σ/(ρR3) [38] for the

2l+1 degenerate modes at any given angular mode num-
ber l = 2, 3, . . . , where R is the radius of the drop, ρ is
its density, and σ is its surface tension. For a 4He drop of
radius R = 1 mm, the l = 2 mode whose optomechanical
coupling we will analyze has a frequency of ω2 = 2π · 23
Hz ≡ ωvib.
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Figure 2. (a) Vibrational modes of a spherical drop, with ra-
dial index n and angular index l; the surface modes n = 0 are
separated from the bulk continuum (n ≥ 1). Points represent
the discrete mode frequencies, and solid lines represent the
analytical expressions for the n = 0 and n = 1 mode frequen-
cies. (b) Illustrations of the velocity profiles for l = 2 surface
modes of different azimuthal number m.

(ii) Sound modes, whose restoring force is provided
by the elastic modulus. The frequency of these modes
depends on the indices n and l [39, 40]. These in-
clude “breathing” modes and acoustic whispering gallery
modes, among others. Their frequencies scale with vs/R
where vs is the speed of sound in liquid He. For the ex-
ample of a 4He drop with R = 1mm, the lowest-frequency
compressional mode oscillates at 2π · 120 kHz.

In the present work we focus on the surface modes,
specifically the lowest nontrivial modes (quadrupole de-
formations, l = 2). These couple most strongly to the
optical WGMs.

B. Optomechanical Coupling to Surface Modes

The single-quantum optomechanical coupling can be
found from the optical WGM detuning produced by the
surface mode’s quantum zero-point fluctuation ampli-
tude. To calculate this amplitude, we note that the sur-
face deflection δR(θ, ϕ) can be decomposed in terms of
the surface modes as δR =

∑
l,mXl,mYl,m(θ, ϕ), where

Xl,−m = X∗l,m are the time-dependent mode amplitudes.
The spherical harmonics Yl,m are normalized such that´
dΩ |Yl,m|2 = 1.
The potential energy of the modes is determined by

surface tension σ. For the l = 2 modes of interest here,
the increase of surface area is given (to lowest order) by
2
∑
m |Xm|2. We note that in order to obtain this result,

care needs to be taken to preserve the volume of the drop
by adjusting the radius (i.e. the l = 0 monopole contri-
bution to δR) [41]. Focusing on the l = 2,m = 0 mode,
we then equate the average potential energy 2σ

〈
X2

0

〉
to

half of the zero-point energy ~ωvib/4. From this, we find
the zero-point fluctuation amplitude of the m = 0 sur-
face mode, as well as the change of radius at the drop’s
equator:
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Figure 3. The mechanical frequency ωvib for a l=2 mode,
the optical decay rate κ, and the optomechanical coupling
constant g0, all as a function of drop radius (for T = 300 mK
and λ = 1 µm). The dashed curve shows optical loss due to
scattering from thermal surface fluctuations; the dotted curve
shows radiative loss due to surface curvature.

X0,ZPF =

√
~ωvib

8σ
, δRZPF =

√
5

16π
X0,ZPF. (1)

Again, for a drop of 4He withR = 1 mm, this isX0,ZPF =
2.2 fm.

Each optical WGM in the drop is specified by the in-
dices l̃, m̃, and ñ (which specify the WGM’s total an-
gular momentum, its projection along the z-axis, and
the number of radial nodes, respectively). The WGM
that lies closest to the drop’s equator (i.e., with l̃ = m̃)
has an optical path length that is proportional to the
drop’s equatorial circumference. As a consequence, we
find g0 = ωoptδRZPF/R for the bare optomechanical cou-
pling between an equatorial optical whispering gallery
mode and the l = 2, m = 0 surface mode. For λ = 1 µm
and R = 1 mm, this amounts to g0 = 2π · 213 Hz (see
Fig. 3).

We note that the optical frequency of the equatorial
WGM couples linearly only to the surface mode with
m = 0. All m 6= 0 vibrational surface modes will be
restricted to (considerably weaker) higher-order coupling.

Optical WGMs with arbitrary (l̃, m̃) [42] also couple
linearly to the l = 2,m = 0 mechanical mode, with cou-
pling rates

g
(l̃,m̃)
0 = ωopt

δRZPF

R

1

2

[
3

m̃2

l̃(l̃ + 1)
− 1

]
. (2)

WGMs propagating near the equator (i.e., with large m̃)
have the usual sign of the coupling (a decrease of opti-
cal frequency on expansion), while those with small m̃
have the opposite sign. In a ray-optical picture, they
travel along great circles passing near the pole, and feel
an overall reduction of path length when the drop’s equa-
tor expands.

The preceding discussion applies strictly to a perfectly
spherical drop. In practice, the magnetic fields used to
counteract the pull of gravity tend to distort the drop’s
shape [43]. A rotating drop will also experience distor-
tion due to centrifugal forces. Such distortions break the
degeneracy of the optical WGMs. Eq. (2), with δRZPF

replaced by the change of radius δR, can also be used
to estimate the impact of this distortion on the optical
WGMs. A family of modes with any given l̃ splits into
l̃+1 distinct frequencies (as modes with given |m̃| remain
degenerate), with the frequency shift ∝ m̃2. In the case
of modes with λ = 1 µm, R = 1 mm scenario and a dis-
tortion δR/R ∼ 1%, the originally degenerate multiplet
would split into a band with ∼THz bandwidth, far larger
than the vibrational frequencies we consider. Indeed, the
bandwidth of frequencies produced from each l̃ manifold
would exceed the free spectral range of the WGMs by
more than an order of magnitude, meaning that optical
modes with differing l̃ could undergo avoided crossings
for certain values of the distortion.

II. MECHANICAL AND OPTICAL QUALITY
FACTORS

A. Damping of mechanical modes

As described in the introduction, the combination
of superfluidity and magnetic levitation should strongly
suppress some sources of mechanical damping. Here we
consider the two mechanisms which are expected to dom-
inate the energy loss from the mechanical modes of a
4He drop. The first is due to damping by the He gas
surrounding the drop, and the second is the exchange of
mechanical energy between the drop’s mechanical modes
(i.e., mediated by its mechanical nonlinearity). Both of
these processes are strongly temperature-dependent.

At sufficiently high temperatures, the vapor surround-
ing the drop and the thermal excitations within the drop
are dense enough to be described as hydrodynamic flu-
ids. Experiments in this regime measured the quality
factor Qmech of the l = 2 surface modes for a 4He drop
of radius R = 2 mm for 0.65 K≤ T ≤ 1.55 K [44]. The
measured Qmech(T ) was in good agreement with calcu-
lations based on a hydrodynamic treatment of the three
fluids (i.e., the superfluid, normal fluid, and vapor) [45].
Within this temperature range, Qmech reached a maxi-
mum value (∼ 1200) for T ∼ 1.2 K (see Fig. 4). At
higher T , the decrease in Qmech is due to the higher va-
por density. At lower T the decrease in Qmech is due to
the increasing dynamic viscosity of 4He.

The counterintuitive increase in viscosity with decreas-
ing T reflects the increasing mean free path Λ of the ther-
mal phonons within the drop. Since Λ is proportional to
T−4 [46, 47], at still lower temperatures the drop will
enter a new regime in which Λ > R. In this regime the
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Figure 4. Qualitative sketch of the expected temperature de-
pendence for the mechanical quality factor Qmech of l = 2
surface modes in a R = 1 mm 4He drop, with indication of
different regimes. In the regime of viscous damping, the vis-
cosity of the normal component drops with increasing temper-
ature, which leads to nonmonotonic behavior of the quality
factor.

hydrodynamic description fails and Qmech is expected to
increase again. Some support for this picture can be
found in the measurements of Ref. [48, 49]. For a R = 1
mm drop, this regime should occur for T < 0.4K.

At these low temperatures, the dominant loss mecha-
nism for the surface waves (ripplons) is ripplon-phonon-
phonon scattering, in which a thermally excited bulk
phonon scatters off the ripplon and is Doppler-shifted,
carrying away energy. This effect has been studied ex-
perimentally and theoretically in [50], with a resulting
estimate for the Qmech of a surface wave traveling on a
plane surface:

1

Qmech
=
π2

90

~k
ρω

(
kBT

~vs

)4

. (3)

Here ω is the surface mode frequency, k is its wavenum-
ber, ρis the density, and vs is the sound velocity.

While our proposal focuses on mechanical modes of
4He drops, for completeness we also note the mechanical
losses of 3He drop surface modes. For a normal-fluid 3He
drop, one can apply Chandrasekhar’s result for the vis-
cous damping [51], according to which 1/Qmech = µ(l −
1)(2l + 1)/(ωR2ρ). Here µ is the dynamic viscosity and
ρ is the density. For T = 1 K, where µ = 30 µP, a 1 mm
drop would have l = 2 surface modes with Qmech ≈ 70,
and the quality factor would decrease approximately as
Qmech ∝ T 2 at lower temperatures [52, 53]. For T . 1
mK, a 3He drop would become superfluid; however this
temperature range is not likely to be accessed via the
cooling methods considered here.

B. Damping of optical whispering gallery modes

Light confined within a WGM may experience loss due
to radiation from the evanescent portion of the mode,
scattering from surface roughness or bulk defects, or ab-
sorption by the host material or its impurities [37]. Here
we consider the contributions of each of these mechanisms
to the quality factor of the optical WGMs in a levitated
drop of liquid helium.

Optical WGMs have been studied in drops of several
different types of liquid. Pioneering experiments by the
Chang group [31, 33, 54] focused on WGMs in freely-
falling drops of ethanol and water and found optical Qopt

as high as 108. Measurements of WGMs in suspended
drops of oil show Qopt = 1.7×108 [18]. Pendant drops of
cryogenic liquid H2 [35, 36] demonstrated Qopt = 4.2 ×
109.

In comparison with these materials, liquid He should
offer reduced absorption. This is because He is
monoatomic (removing the possibility of inelastic light
scattering from bond stretching or other molecular de-
grees of freedom), has a large gap for electronic excita-
tions (∼19 eV), and is free of chemical impurities and
surface adsorbates.

Liquid He posesses an unusally low index of refraction
(n ∼ 1.028), which would lead to increased radiative loss
at fixed R and λ. However radiative loss from a spherical
resonator decreases exponentially [37] with R/λ. As a re-
sult, even with the small refractive index of He, radiative
loss becomes negligible in mm-scale drops (see Fig. 3).

Surfaces defined by surface tension are typically very
smooth. Nevertheless, thermally excited ripplons will re-
sult in an effective surface roughness. As described be-
low, we expect this will be the dominant loss mecha-
nism. To analyze this mechanism we assume that the
random thermal surface deformation is essentially frozen
during the lifetime of the optical WGM. Furthermore, we
only consider ripplon modes with wavelengths small com-
pared to R. In this case the Fourier transform G̃(k) of
the spatial correlation function of surface deflections can
be approximated by the known result for a planar sur-
face, G̃(k) = 2πkBT/σ |k|, where σ is the surface tension.
Adapting an analysis for planar waveguides with a disor-
dered surface [55], the WGM loss rate (via outscattering)
is

1

Qopt
≈ Φ(0)2(ε− 1)2

k20
8π

ˆ π

0

G̃(k − k0 cos θ)dθ . (4)

Here k0 is the optical WGM’s vacuum wavenumber, and
ε = 1.057 is the dielectric constant of helium. Φ(y) is
the normalized transverse mode shape (

´
Φ(y)2dy = 1),

such that Φ(0)2, evaluated at the surface, is roughly the
inverse extent of the mode. Following Ref. [56] and con-
sidering TE modes only, we take Φ(0)2 ≈ 2ε/(R(ε −
1)) as an upper estimate, eventually obtaining Qopt ≈
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2R/(πk0
√
ε− 1)(σ/kBT ) as a lower bound for Qopt. Ap-

plying this approach to liquid 4He at T = 300 mK, with
σ = 3.75 · 10−4 N/m, and λ = 1 µm gives Qopt ∼ 4 · 1010

for a drop with R = 1 mm. For 3He, the surface tension
and the resulting Q are both about 2.5 times lower.

At present there are no experiments on He drops with
which to compare this estimate. However applying this
analysis to the liquid H2 drops of Refs. [35, 36], gives
Qopt ∼ 2 · 108, i.e. it underestimates Qopt by roughly an
order of magnitude. This may reflect the fact that the
ripplon modes evolve during the WGM lifetime, averag-
ing out some of the effective roughness.

We estimate other scattering mechanisms to be signif-
icantly less important: Brillouin scattering from thermal
density fluctuations inside the drop [57, 58] should give
Qopt > 1013, and Raman scattering from rotons should
be even weaker (following Ref. [59]).

C. Summary of parameters

Based on the estimates above, the most important op-
tomechanical parameters for a drop of 4He with R =
1 mm are summarized in the following table (assuming
T = 300 mK):

ωvib/2π Qmech Qopt g0/2π

23 Hz > 103 > 1010 213 Hz

Notably, this system enters the previously-unexplored
regime where g0 > ωvib. While our estimate for Qopt

gives an optical linewidth that is only ∼40 times larger
than the optomechanical coupling rate, the same “frozen-
deformation” approximation underestimates the quality
factor of hydrogen drops by a factor of 20. Moreover,
at lower temperatures, Qopt ∝ 1/T increases yet further.
The levitated helium drop is thus likely to approach the
single-photon strong coupling regime.

D. Evaporative Cooling

The temperature of an optomechanical device is typi-
cally set by the competition between optical absorption
(which leads to heating) and the device’s coupling to a
thermal bath (which allows this heat to be removed). For
levitated solids, the heat removal process is inefficient, as
it occurs primarily via blackbody radiation, resulting in
elevated temperatures for even moderate optical power.
In contrast, a levitated liquid may also cool itself via
evaporation. As described below, evaporation provides
an effective means for maintaining the drop temperature
well below 1 K. However evaporation also couples the
drop’s radius R to its temperature T . Since many of the

device’s relevant parameters (such as the resonance fre-
quencies and quality factors of the optical and mechanical
modes) depend on both R and T it is important to have
a quantitative model of the evaporation process.

Evaporative cooling of helium droplets has been stud-
ied both experimentally and theoretically. Experiments
to date have used µm- and nm-scale droplets that are
injected into a vacuum chamber. In the ∼ms time be-
fore the droplets collide with the end of the vacuum
chamber they are found [30] to reach T ∼ 370 mK
(150 mK) for 4He (3He). This cooling process can be
understood by considering how energy loss – given by
the latent heat per atom (∆E(T )) times the evapora-
tion rate Γ(N,T ) (atoms/sec) – leads to cooling ac-
cording to the heat capacity C(N,T ) of the droplet:
dT
dt = −Γ(N,T )∆E(T ) 1

C(N,T ) , where the total numberN
of atoms in the drop decreases as dNdt = −Γ(N,T ). Simul-
taneous solution of the differential equations yields the
cooling dynamics. Theoretical models valid in the low-T ,
low-N limit have successfully explained the experiments
[60]. They used an Arrhenius law for the evaporation rate
Γ ∝ NT 2e−E0/kBTwith E0 = ∆E(0) = kB ∗7.14K(2.5K)
for 4He (3He), and considered only ripplon (for 4He) or
free Fermi gas (for 3He) contributions to the heat capac-
ity of the drop.

To model the full range of temperatures attained dur-
ing cooling, and to account for phonon contributions to
the heat capacity (needed for large-N drops of 4He),
we use primarily measurement-based values [61] of la-
tent heat ∆E, vapor pressure P (which determines the
evaporation rate via Γ ≈ 4πR2P/

√
2πmkBT assuming

unit accommodation coefficient), and specific heat [62–
65]. Figure 5a shows the expected temperature T (t) for
4He and 3He drops with an initial radius of 1 mm, cooled
from 4.0 K and 2.5 K respectively. Because 3He has a
higher vapor pressure, it cools more effectively: For 4He
(3He), the drop temperature reaches ∼350 mK (∼200
mK) after ∼ 1 s evaporation time and slowly cools to
∼290 mK (∼150 mK) after ∼ 1 minute. The complete
cooling process shrinks the radius of both types of drops
by about 10%.

In the absence of any heat load (as assumed for the sim-
ulation shown in Fig. 5a), T will continue to decrease,
although over impractically long time scales. In an ac-
tual experiment we expect a finite heat load on the drop,
which will result in T asymptoting to a finite value. The
asymptotic value of T will determine the quality factor of
the optical and mechanical modes (as described above).
It will also set the (constant) rate at which R will drift
during any experiment. This drift in R will not result in
any appreciable change in the mechanical mode frequen-
cies; however the drift in the optical mode frequency will
need to be tracked, e.g., by standard laser-locking tech-
niques (see Fig. 5b,c).

For a 4He drop with R = 1 mm, the optical drift rate
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Figure 5. Evaporative cooling of the helium drop. (a) Evo-
lution of temperature as a function of time for drops with an
initial radius R = 1 mm (which decreases by about 10% dur-
ing cooling). Note the logarithmic time scale; the physically
relevant times are those above 1 sec, lower times depend on
the detailed experimental protocol. (b) Rate of change of the
whispering gallery mode resonance frequency, due to the de-
crease of radius by continuous evaporation, for a λ = 1 µm
mode of a R = 1 mm drop. (c) Cooling power ∆E Γ, dis-
played as a function of temperature, for R = 1 mm. Blue:
4He; Dashed orange: 3He.

is ∼ 1016 Hz/s per Watt of dissipated power (and is ∼
4× larger for 3He because of the lower binding energy
and density of 3He). To estimate the likely heatload on
the drop, we note that Brillouin scattering in the optical
WGM [27] should result in absorption of < 10−10 of the
incident laser power (for λ = 1 µm). Assuming an input
power ∼ µW, this would result in an optical drift rate of
only ∼Hz/s.

III. ROTATIONS

A. Towards Quantum Non-Demolition
Measurements of Rotation

One of the unique characteristics of fluid drops, as op-
posed to solid dielectric spheres, is the possibility to op-
tically measure and possibly even control rotations, via
the deformation of the rotating drop. Rotational motion
represents a low-energy excitation that is not equivalent
to a harmonic oscillator, and so offers access to quantum
phenomena that are qualitatively distinct from those typ-
ically studied in cavity optomechanics.

The rotational motion of 4He is qualitatively different
from that of 3He. For the temperatures relevant here
(∼ 300 mK), 4He is a pure superfluid and so its rota-
tion is determined by the presence of vortices, each with
quantized circulation. The angular momentum associ-
ated with each vortex is N~ (where N is the number
of atoms in the drop); thus the drop’s angular momen-
tum can only change in relatively large discrete steps.
In practice, this will ensure that the number of vortices
is constant at low temperatures. Nevertheless, a drop a
with a fixed number of vortices will still possess nontrivial
dynamics owing to the vortex lines’ motion.

In contrast, 3He is a normal fluid at these temperatures
and so may undergo rigid-body rotation. Its angular mo-
mentum can change in very small steps of ~, allowing
the drop’s total angular momentum to be a dynamical
variable. Although 3He is highly viscous at these tem-
peratures, viscosity does not directly damp rigid body
rotation.

For both 4He and 3He, the drop’s rotational motion
is expected to interact with the optical WGMs primarily
because the flow field associated with the rotation will
deform the drop shape, and thereby detune the WGMs.
This coupling would allow optical measurements (i.e., of
the WGM) to provide information about the drop’s rota-
tional motion. In order to consider the quantum limits of
such a measurement, we note that the angular momen-
tum Lz = IΩz is connected to the angular frequency Ωz
via the drop’s moment of inertia I = (8π/15)ρR5 (here
we assume that the drop is nearly spherical). In princi-
ple, Ωz can be inferred from the WGM detuning caused
by the equatorial bulge (which is produced by the cen-
trifugal acceleration Ω2

zR). The radius at the equator
increases by an amount δR ∝ Ω2

z. As described above,
the resulting shift of an optical WGM at the equator is
δωopt = ωoptδR/R. We thus obtain an “opto-rotational”
coupling Hamiltonian of the form

ĤQND = ~gL

(
L̂z
~

)2

â†â . (5)

The form of this Hamiltonian allows for a QND measure-
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ment of L̂2
z.

The Hamiltonian of Eq. (5) is a simplified version of
the real coupling, as will be explained in the next sec-
tion. However, it is sufficient for understanding the ba-
sic physics of the opto-rotational coupling, and to esti-
mate the feasibility of angular momentum QNDmeasure-
ments.

The frequency shift gL in Eq. (5) is given by gL =

ωopt(δR/R) (~/Lz)2, where Lz is the (classical) mean
value of the drop’s angular momentum and δR is the
bulge produced by Lz. By balancing pressure, centrifu-
gal force, and surface tension we find:

δR = (ρ/σ)R4Ω2
z/24 . (6)

Thus, smaller drops deform less for a given angular fre-
quency, due to the smaller centrifugal force. However,
in terms of gL this is overcompensated by the rapidly
increasing ratio Ωz/Lz = 1/I. Altogether, the WGM
detuning has a strong dependence on the drop radius:

gL = ωopt
~2

ρσR7

1

24

(
15

8π

)2

(7)

Nevertheless, it should be stressed that for typical param-
eters this constant is exceedingly small. For a 3He drop
with R = 1 mm, ρ ∼ 81 kg/m3, and σ = 1.52 ·10−4 N/m,
we have gL = ωopt ·1.3 ·10−47. Fortunately, in most situ-
ations the detuning can be much larger than that. This
is because the WGM detuning scales with L̂2

z, meaning
that changing Lz by ~ results in a detuning 2gL(Lz/~)
and so can be substantially enhanced for large values of
Lz/~.

In order to detect a given deviation in angular mo-
mentum δLz, a phase shift ∼ δωopt/κ has to be resolved
by the number of photons Nphot sent through the drop’s
WGM during the time of the measurement. This implies
that the minimum detectable phase must be sufficiently
small, δθ = 1/(2

√
Nphot) < δωopt/κ = Qoptδωopt/ωopt.

More formally, the resolution is set by δL2
z = t−1meas · SL,

where we have introduced the spectral density SL for
the angular momentum imprecision noise. The spec-
tral density is defined in the usual way [66], with SL =´
〈δLz(t)δLz(0)〉 dt, where δLz(t) represents the instan-

taneous fluctuations of the angular momentum deduced
from the observed phase shift. Taking into account the
phase-shift fluctuations produced by the shot-noise of the
laser beam, as estimated above, we find:

SL ≡ ~2
(
ωopt

2gL

)2( ~
Lz

)2

(4Q2
optṄphot)

−1 . (8)

We briefly discuss a numerical example to illustrate
the possible experimental measurement precision. A nor-
mal 3He drop spinning at Ωz/2π = 1 Hz (well below the

hydrodynamic instability) will have Lz/~ = IΩz/~ =
8 · 1021. For ωopt/2π = 300 THz (λ = 1 µm), this yields
an optical frequency shift of 2gL(Lz/~) ≈ 2π ·6·10−11 Hz
per ~ of additional angular momentum. Therefore, we

find
√
SL ≈ 2 · 1024~/(Qopt

√
Ṅphot). For 10 µW of in-

put power and for Qopt = 1010, one would thus have an
angular momentum resolution of

√
SL ≈ 3 · 107~/

√
Hz.

These numbers indicate that it will be impossible to re-
solve a change of angular momentum by a single quantum
~. However, one should be able to measure Lz (or Lx or
Ly) with a precision better than

√
~L. This is the spread

of Lx and Ly in a situation with maximum Lz = L,
according to Heisenberg’s uncertainty relation. Indeed,
for the example given above,

√
~L ∼ 1011~, which, ac-

cording to the estimated noise power SL, can be resolved
in tmeas ∼ 0.1 µs. Moreover, in the case of a super-
fluid 4He drop under identical conditions, the sensitivity√
SL ≈ 1.4 · 108~/

√
Hz is easily sufficient to carefully

monitor a single vortex line, which would carry an angu-
lar momentum of ∼ 1020~

There are three potential noise sources that may inter-
fere with the QND measurement of angular momentum:
fluctuations in the number of evaporating atoms leading
to stochastic changes of the drop radius, random angular
momentum kicks due to evaporating atoms, and angular
momentum transfer by randomly out-scattered photons.
We have estimated all these effects (see Appendix A),
and found them to be smaller than the measurement un-
certainty attained in the example given above.

Lastly, we note that in addition to the centrifugal cou-
pling considered above there is also the Fizeau effect,
which produces a WGM detuning ∝ L̂z (with a different
sign for clockwise and counter-clockwise WGM modes).
We estimate the single quantum coupling rate for the ef-
fect to be gF ≈ 2π × 10−20 Hz for R = 1 mm. Since the
Fizeau effect does not increase with |Lz|, we expect the
centrifugal coupling to dominate.

B. Coupling between Vibrations and Rotations

The coupling in Eq. (5) is idealized in two ways. First,
it assumes that the drop strictly rotates only around the
z-axis and that L̂x, L̂y are not involved in the dynamics.
Second, we have written down a direct coupling between
rotation and optical frequency. In reality, the rotation
will first lead to a deformation, i.e. a displacement of
one of the surface modes, and this deformation will then
couple to the optical WGM. Conversely, the laser’s shot
noise will lead to a fluctuating force acting on the surface
modes, which then couple back to the rotation. This rep-
resents the back-action associated with the optical read-
out.

In the present QND case, the back-action leads to de-
phasing between different eigenstates of the angular mo-



9

mentum projection L̂z. Physically, fluctuations in the
circulating photon number couple to L̂2

z (via the defor-
mation) which then scramble L̂x and L̂y.

In summary, a more complete understanding of the
optical measurement of angular momentum will require
a description of the coupling between mechanical vibra-
tions and the drop’s rotations. This is also an interesting
dynamical problem in its own right, and it turns the liq-
uid drop into a novel coupled opto-mechanical-rotational
system (Fig. 6a).

The interplay between rotations, deformations and vi-
brations in fluid spheres has been studied in nuclear
physics (for the liquid drop model of the nucleus [39]),
geophysics (for rotating planets), and hydrodynamics
(for rotating drops [67]). For small angular frequencies,
the two most important effects are (i) the slight deforma-
tion of the drop due to the centrifugal force and (ii) a shift
in the frequencies of the surface modes. This frequency
shift (sometimes known as Bryan’s effect [68, 69]) is due
to the Coriolis force. It leads to a rotation of the sur-
face vibrations that is neither a simple co-rotation with
the rotating drop nor static in the lab frame. For the
l = 2 modes of interest here, the frequencies in the rotat-
ing frame are shifted by −ωrotm/2, where m is the mode
index (|m| ≤ 2).

Previous studies of the interplay of rotations and vibra-
tions have typically been limited to a fixed rotation axis
or other special cases [39, 67]. To move beyond these as-
sumptions, we have derived the full Lagrangian of the sys-
tem without any such assumptions of symmetry, for the
case where only l = 2 surface modes are excited (exten-
sions to larger l are straightforward). To accomplish this,
we note that the surface deformation pattern δR(θ, ϕ, t)
in the laboratory frame can be decomposed into spheri-
cal harmonics. The five deflection amplitudes Xm of the
l = 2 surface modes, together with the three Euler rota-
tion angles, form the set of variables in the Lagrangian
(Appendix B).

The Lagrangian can be derived by (i) calculating the
flow field inside the drop enforced by the time-varying
deformation pattern of its surface, (ii) integrating the
resulting kinetic energy density over the volume of the
drop, and (iii) adding the potential energy from the sur-
face tension. This assumes an incompressible fluid whose
flow field can be understood as an irrotational flow pat-
tern in the co-rotating frame, produced by the surface
deformation. The final result involves the deformation
variables Xm, the angular velocity vector Ω, and the Eu-
ler angles that transform between the co-rotating frame
and the lab frame. We display the slightly involved La-
grangian in the appendix and we will publish its full
derivation elsewhere.

The basic physics can be understood qualitatively by
considering the special case of a rotation around the z-
axis. In particular, the kinetic energy in the Lagrangian
contains the following term, beyond the standard terms

Lz

Lx

rotation

surface modes

optical mode

a b

Figure 6. (a) The helium drop represents a novel coupled
system, with nonlinear interactions leading from rotational
motion via the surface modes to optical frequency shifts. (b)
A measurement of the WGM detuning reveals information
about L2

z − (L2
x +L2

y)/3. Contours of this function are shown
in the Lx,Lz plane. A given measurement result (within some
uncertainty interval) maps to a narrow region (dark blue ar-
eas), whose intersection with the state’s initial uncertainty
(white ellipse) determines the state after the measurement.

for the rigid-body rotation of a sphere and the kinetic
energies of the surface modes:

I

4

√
5

π

X0

R
Ω2
z. (9)

This is the term that couples the bulge mode deflection
X0 to the rotation around the z-axis (with the moment
of inertia I = (8π/15)ρR5). Physically, it can be read
in two ways. First, spinning up the drop creates a fi-
nite deflection proportional to Ω2

z, which then leads to
an optical shift, as discussed previously. Conversely, a
deflection increases the moment of inertia and thereby
the rotational energy for a given angular frequency.

We note that for a rotating drop there also appears a
set of low-frequency modes, the so-called “inertial modes”
[70, 71]. Their frequencies scale with the rotation fre-
quency, and they are thus well separated from the vibra-
tional modes we have been discussing, as long as the rota-
tion speed is sufficiently far below the instability thresh-
old for nonlinear drop deformation and fission. As a re-
sult, we neglect them.

As for the effective coupling between the angular mo-
mentum and the optical frequency, we have to point out
another interesting aspect that has been omitted in the
simplified model of Eq. (5). An optical whispering gallery
mode traveling around the equator in the xy-plane will
be sensitive not only to the bulge equatorial deformation
that is generated by Lz; its frequency will also be shifted
by a rotation around the x-axis (or y-axis), since this
leads to an expansion of the equator in the yz- (or xz-)
plane. According to Eq. (2), this frequency shift is 1/3 of
that obtained for z-rotations, and has the opposite sign.
As a consequence, the operator that is really measured
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is expected to be the combination L̂2
z − 1

3 (L̂2
x + L̂2

y). The
situation is displayed in Fig. 6b.

In an experiment, angular momentum will be gener-
ated by spinning up the drop (e.g. via the application of
a rotating electric field). Such an approach will not select
a single energy eigenstate with a definite L, but rather
a coherent superposition of various L (as well as of vari-
ous Lz). The details will depend on the exact procedure
used for spinning up the drop, and in practice there will
be a thermal incoherent mixture because the experiment
is conducted at finite T with a large thermal population
of vibrational and rotational levels. The QND measure-
ments described above would then be able to resolve the
angular momentum to some extent, thereby narrowing
its distribution via the measurement backaction.

In summary, the Lagrangian that we briefly discussed
here will form the general basis for discussions of the
intricate coupled nonlinear dynamics of vibrations and
rotations in the fluid drop. Among other things, this
will enable a detailed analysis of the measurement back-
action in optical dispersive measurements of the angu-
lar momentum components. However, exploring the rich
nonlinear dynamics of this model is beyond the scope
of the present work and we leave these steps to future
research.

IV. OUTLOOK

The levitated helium drop offers a large number of un-
usual features that represent opportunities for unconven-
tional optomechanics and fundamental studies of super-
fluid helium physics. Here we will briefly mention some
of those.

Due to the large energy of electronic transitions in he-
lium, the drop is expected to handle high circulating op-
tical powers. We estimate the optical spring effect in the
drop to be ∼ 1 Hz per photon, so it should be possible
to increase the drop’s mechanical frequencies by several
orders of magnitude. It would remain to be seen how the
mechanical Q of a given surface mode would evolve as
its frequency is increased past a large number of other
mechanical modes. At the same time, the static deflec-
tion can remain small (∼ 1 µm) even for 108 circulat-
ing photons. Moreover, it would be rather easy in this
setup to reach the strong-coupling regime of linearized
optomechanics, g0Nphot > κ, for g0 ∼ 200 Hz and a
conservative estimate of κ ∼ 10 kHz. Thus, using the
tools of linear optomechanics [1], one could e.g. trans-
fer nonclassical optical states into the surface vibrational
modes. Possibly, these could then be further transferred
onto the angular momentum state, generating novel op-
torotational control. Alternatively, the dispersive mea-
surement of angular momentum outlined above can be
used to generate interesting post-selected states, includ-
ing states of squeezed angular momentum.

Beyond the conventional linear optomechanical cou-
pling, it should also be possible to realize quadratic cou-
pling in this setup. Indeed, according to Eq. (2), an
optical whispering-gallery mode whose plane is tilted at
a particular angle will have vanishing linear coupling to
the equatorial bulge mode (l = 2, m = 0), while the op-
tical WGM in the equatorial plane itself has no linear
coupling to the m 6= 0 mechanical modes.

In the present manuscript, we have entirely focussed on
the lowest-order surface vibration modes at l = 2. How-
ever, one can imagine generating interesting multimode
optomechanics when addressing the higher-order modes
as well. The collective optical spring effect will be able
to generate an effective light-induced interaction between
those modes, which can get so strong as to form com-
pletely new normal modes. Moreover, one can imagine
exploiting transitions between optical modes of different
radial and angular momentum quantum numbers. These
transitions will then couple efficiently to higher l me-
chanical modes, e.g. acoustic whispering gallery modes,
leading to Brillouin-like optomechanical interactions [72].

When a drop’s surface deformations or rotation rate
become sufficiently large, a variety of nonlinear effects are
expected to occur. It is known that a rotating drop can
develop symmetry-broken shapes [73], but many ques-
tions remain open. For example, is it possible to obtain
stable drops with non-zero topological genus [74]?

Finally, the optical control and readout can serve as a
completely novel means to study the physics of superfluid
helium in a setting that is devoid of any complications
arising from solid surfaces. For example, at low temper-
atures, the damping of surface waves (ripplons) is due to
ripplon-phonon scattering. However, due to the finite size
of the drop, the bulk phonons inside the drop constitute
a bath with a very strongly frequency-dependent force
noise spectrum and strongly non-Markovian properties.
These might be studied quantitatively, especially using
the optical spring effect as a tool to vary the ripplons’
frequency.

Rotation in the superfluid drop is quantized and vor-
tex lines emerge as the drop is made to spin above a
certain rotation rate [26, 75]. Below that rate, the drop’s
angular momentum must be contained either in surface
modes or in the normal fluid (phonons propagating in
the bulk). The presence and the motion of the vortex
lines then affects the surface deformation, and this will
be readily measurable optically. Even a single vortex line
is not inert. It can wiggle, and these vibrations of the
string-like vortex (known as Kelvin modes) could also be
read out via their effect on the optical WGM, providing
a means for measuring the mechanical properties of an
isolated vortex line [76, 77]. Moreover, one could investi-
gate the interactions of many vortices as well as quenches
through phase transitions, e.g. observing Kibble-Zurek
type physics upon cooling a spinning drop. In general,
optomechanics in levitated helium drops may become a
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new tool enabling us to explore a whole range of physical
phenomena that are analogues to effects in high-energy
physics and cosmology [78].

ACKNOWLEDGMENTS

F. M., M.S., and A. A. acknowledge support through
an ERC Starting Grant (“OPTOMECH”), as well as the
European FET proactive network “Hybrid Optomechan-
ical Technologies”. L.C. acknowledges support from a
L’Oreal USA FWIS Fellowship (2012), NSERC Discov-
ery 435554-2013, and a Canada Research Chairs grant
950-229003. J. H acknowledges support from W. M.
Keck Foundation Grant No. DT121914, AFOSR Grants
FA9550-09-1-0484 and FA9550-15-1-0270, DARPA Grant
W911NF-14-1-0354, ARO Grant W911NF-13-1-0104,
and NSF Grant 1205861. This work has been sup-
ported by the DARPA/MTO ORCHID Program through
a grant from AFOSR. This project was made possible
through the support of a grant from the John Templeton
Foundation. The opinions expressed in this publication
are those of the authors and do not necessarily reflect the
views of the John Templeton Foundation. This material
is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant
No. DGE-1122492.

APPENDIX A: NOISE SOURCES FOR THE QND
MEASUREMENT OF ANGULAR MOMENTUM

There are three noise sources that may potentially in-
terfere with the QND measurement of the drop’s angular
momentum.

The first is due to the fact that the evaporation of
atoms is a stochastic process. When N atoms evaporate
on average during a given time interval, that number ac-
tually fluctuates by

√
N , leading to corresponding fluc-

tuations in the drop radius and the optical resonance.
The effect diminishes as the temperature decreases and
the evaporation rate slows. The relevant rates can be
extracted from Fig. 5. After 1000 s of evaporation, a
3He drop reaches T ≈ 0.13 K with ∼ 1 nW of cooling
power. This corresponds to 4 · 1013 atoms evaporating
per second, with a resulting deterministic drift of the
optical resonance of ∼ 60 MHz/s. In Section III.A we
considered a measurement time of 0.1 µs, which is suf-
ficiently long to resolve an angular momentum spread
of the order of the Heisenberg uncertainty,

√
~L. Dur-

ing this time, the number of evaporated atoms fluctuates
only by about 103, leading to a negligible stochastic op-
tical shift of ∼ 10−3 Hz.

The second noise source is directly connected to the
same physics: the evaporating atoms will also carry away
angular momentum. For T = 0.1 K, a single atom flying

off with the mean thermal velocity can extract ∼ 106~
from a droplet of radius R = 1 mm. Staying with the
example considered in the previous paragraph, in 0.1 µs
this results in a stochastic contribution to Lz of 109~,
much smaller than the 1011~ measurement resolution
mentioned above.

Finally, the third noise source is present even in the
absence of evaporation. It consists of changes in the
drop’s angular momentum due to the scattering of pho-
tons. Each randomly scattered photon can carry away
angular momentum ∼ R · ~k, which amounts to about
6000 ~. Assuming an input power of 10 µW and that
10% of the photons are scattered stochastically in ran-
dom directions (e.g. from the thermal surface fluctua-
tions), this process would result in a stochastic angular
momentum transfer (during a 0.1 µs measurement time)
of ∼ 4 · 106~, well below the measurement uncertainty.

APPENDIX B: LAGRANGIAN FOR THE
COUPLING OF ROTATIONS TO THE l = 2

VIBRATIONS IN AN INCOMPRESSIBLE FLUID
DROP

The purpose of this appendix is to display the full La-
grangian describing the coupling between arbitrary rota-
tions and the vibrational l = 2 surface modes of the drop.
To that end, we have to introduce a number of definitions.
The derivation of this Lagrangian will be discussed in a
separate publication (see also the thesis [40]).

For brevity, it is convenient from now on to mea-
sure lengths in units of the sphere radius (such that
R = 1). Appropriate dimensions can be re-instated later,
if needed. The surface deformation pattern in the labo-
ratory frame is given by

δRLab(r, t) =

2∑
m=−2

XLab
m (t)φm(r) , (10)

where r resides on the surface (|r| = 1). The φm(r)
are based on the l = 2 spherical harmonics, φm(r) ∼
r2Yl,m(θ, φ). They have been extended to cover all of
space, which will simplify the notation further below.
More precisely, we have defined φ±2 = N2(x ± iy)2,
φ±1 = N1(x ± iy)z, and φ0 = N0(x2 + y2 − 2z2); where
the constants areN2 = (32π/15)−1/2, N1 = (8π/15)−1/2,
and N0 = (16π/5)−1/2. The surface integrals are normal-
ized,

´
|φm|2 sin θdθdϕ = 1 for |r|= 1.

To write down the Lagrangian, we need to convert be-
tween the lab frame and the co-rotating frame (described
by a set of three Euler angles which we sometimes com-
bine into a three-vector ~ϕ). We assume that the trans-
formation is effected by a suitable 5× 5 matrix W , with
XLab = WXRot, or explicitly:
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XLab
m =

2∑
m=−2

Wmm′(~ϕ)XRot
m . (11)

Upon rotation of the drop by the angular frequency vec-
tor Ω (which is expressed in the lab frame), the matrix
W changes according to

d

dt
Wmm′ = −

3∑
s=1

2∑
k=−2

ΩsK
(s)
kmWkm′ , (12)

or Ẇ = −∑s Ωs
(
K(s)

)t
W in matrix notation. This re-

lation defines the generators K(s)
km that describe infinites-

imal rotations. The generator K(3) for rotations around
the z-axis is the simplest one, with K

(3)
km = imδk,m.

Finally, we introduce the notation DRot
m = ẊRot

m , and
DLab = WDRot. With these definitions, we are now in a
position to write down the full Lagrangian that couples
vibrations and rotation:

L =
I

2
Ω2 +

ρ

4
ẊRot∗
m ẊRot

m − I

2
δRLab(Ω)

+
ρ

4
DLab
m ΩsK

(s)
mm′X

Lab∗
m′ − 2σXRot∗

m XRot
m . (13)

Summation over repeated indices is implied. This La-
grangian contains, in this order: (i) the rotational en-
ergy of the unperturbed spherical drop, (ii) the kinetic
energy of the surface vibrations, (iii) the change in the ro-
tational energy due to the deformation (with the surface
deformation field δR evaluated at the angular momentum
vector), (iv) the term describing Bryan’s effect (from the
Coriolis force), (v) the potential energy of the surface
vibrations (due to the surface tension). We note that
all the deformation-related quantities (XRot, XLab, and
DLab) have to be expressed via XRot for the purpose of
deriving the equations of motion. We also note that the
XRot coefficients obey the constraint XRot

−m = XRot∗
m due

to the fact that the surface deformation is real-valued.
In deriving the equations of motion, one can either split
XRot
m into real and imaginary parts (for m > 0) or, more

efficiently, formally treat XRot
m and XRot∗

m as independent
variables.
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