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Abstract
Vorticity in two-dimensional superfluids is subject to intense research efforts due to its role in
quantum turbulence, dissipation and the BKT phase transition. Interaction of sound and vortices
is of broad importance in Bose–Einstein condensates and superfluid helium.However, both the
modelling of the vortex flow field and of its interaction with sound are complicated hydrodynamic
problems, with analytic solutions only available in special cases. In this work, we developmethods
to compute both the vortex and sound flow fields in an arbitrary two-dimensional domain.
Further, we analyse the dispersive interaction of vortices with soundmodes in a two-dimensional
superfluid and develop amodel that quantifies this interaction for any vortex distribution on any
two-dimensional bounded domain, possibly non-simply connected, exploiting analogies with
fluid dynamics of an ideal gas and electrostatics. As an example application we use this technique to
propose an experiment that should be able to unambiguously detect single circulation quanta in a
helium thin film.

1. Introduction

Superfluidity in two dimensions, first systematically investigated in the 70s in helium thin films [1–4], has
sparkedmajor research efforts in recent years, culminating in the 2016Nobel Prize, awarded for understanding
the nature of superfluidity in two dimensions [5–7]. The superfluid phase transition is native to a broad variety of
physical systems, such as two-dimensional Bose–Einstein condensates [8, 9], exciton-polariton condensates
[10, 11], and topological condensedmatter systems [12]. Quantized vortices play a crucial role in these two-
dimensional fluids, as their binding into pairs enables the emergence of long-range order and thereby transition
to the superfluid phase. Understanding of vortex dynamics provides a pathway for controlling vortices with
sound, imaging vortex distributions, understanding quantum turbulence, and engineering dynamical
interactions between vortices and sound [13–16].

Vortex dynamics in strongly interacting superfluids is of significance to a range of research fields: in
topological condensedmatter physics, it is responsible for the superfluid phase transition and the onset of
dissipation [5–7]; In astrophysics, the observed glitches in the rotation frequency of neutron stars are thought to
result fromvortex-unpinning events [17]; evidence for half quantumvortices (HQVs) has been found in
superfluid 3He, where theHQVs in the A-phase of superfluid 3He are thought to hostMajorana-fermions,
bearing promise for fault tolerant topological quantum computing [18–20]; vortices in 3He are interesting as
analogues of exotic topological defects [19, 21]—the broken-symmetry-core vortex in superfluid 3He-B
corresponding toWitten-strings [22–24]; theHQV in the polar phase of superfluid 3He corresponding Alice-
strings [25]; the spin-mass-vortex in 3He-B, which has been proposed as an analogue for composite defects
appearing in some grand unified theories of particle physics and even the standardmodel [26, 27]. Therefore, the
ability to determine the flowfield induced by an arbitrary configuration of vortices, on an arbitrary and perhaps
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multiply-connected geometry is of broad importance, as is the ability to predict the strength of vortex-sound
interaction.

In the case of Bose–Einstein condensates, pressure- and temperature-waves constitute the relevant sound
eigenmodes ( first- and second-sound, respectively), while for helium thin films, both thesemodes of
oscillation are suppressed due to the incompressibility of the fluid and the clamping of the normal fluid
component. Surface excitations, so-called third-soundwaves, become the primary form of soundwave [28].
Recently, both observation of temperature-wave propagation in a two-dimensional Bose–Einstein
condensate [29], and real-timemeasurement and control of third sound on a superfluid helium thin film [30]
have been demonstrated.

Quantifying vortexflowfields and their interactionwith soundwaves has sparked substantial research
efforts. Ellis et al [31–33] electrically excited third-soundmodes to swirl up an ensemble of vortices in a helium
thinfilm—however, despite elaboratemathematical analysis [34], theirmodelling of vortex-sound interaction
was limited to simple, centred vortex ensembles on a circular resonator. In the case of BECs, a plethora of
analyses for vortex-sound interaction has been performed [35–43] and the dispersive interaction has been
quantified for centred vortices in simple trap geometries [36, 37].

In this work, wemodel vortexflowfields and the interaction of soundmodeswith vortices in a two-
dimensional superfluid by exploiting analogies with other areas of physics.Wemap vortex dynamics onto
electrostatics, and superfluid hydrodynamics onto fluid dynamics of an ideal gas. This allows us to draw on
technicallymaturefinite-element-modelling (FEM) tools available for these fields.We showhow the
interactions of sound and theflowfield of arbitrary vortex distributions can be computed using these tools on
any two-dimensional, not necessarily simply connected, domain. Thus, ourwork provides a theoretical
framework for controlling and imaging vortices, and for engineering a dynamical interaction between sound
and vortices.

As an example, we discuss the interaction of soundBesselmodes on a disk-shaped domainwith quantized
vortices, which is relevant for a number of experiments on superfluid thin films [30, 31, 44, 45] and two-
dimensional Bose–Einstein-condensates [29, 46, 47]. The interaction induces splitting between otherwise
degenerate soundmodes [31, 36, 37].We showhow the vortex number can be extracted from experimental
measurement of the splitting. Further, we present a perturbative analyticmodel, approximating the FEM-
simulation for circular geometries, which offers some intuitive insight on the vortex-sound coupling
mechanism.

Lastly, we focus our analysis to the prospect of detecting quantized circulation in helium thinfilms.While
vortices in Bose–Einstein condensates can be visualized by optical snapshots [48], and pinned vortices in
exciton-polariton condensates can be visualized by optical interferometry, no such direct observation technique
exists for helium thin films: the vortex core is anÅngström-size perturbation on an ultra-thin film of
transparent liquid, whoseflowdoes not interact dissipatively with the environment.Measurements on helium
are important because, unlike exciton-polariton condensates andmost Bose–Einstein condensates, the atoms in
superfluid helium are strongly interacting, introducing dynamics that can not bemodelled through theGross–
Pitaevskii equation, and are not fully understood [49].

Wefinally propose an experiment where discrete steps due to an increase or decrease in the number of
circulation quanta could be observed for the case of a superfluid helium film.We suggest a geometrywhere
vortex pinning around an engineered topological defect leads to experimentally observable quantized steps.
Drawing on the finite elementmodel, we discuss how, in this geometry, the interactionwith sound can be
maximized, so that these steps could be clearly resolved. This would enable the first direct detection of quantized
circulation in two-dimensional superfluid helium.

2. Sound-vortex interaction and their analogues

2.1. Sound in two-dimensional superfluids
Superfluid hydrodynamics is generally described by the continuity equation [31]:

r
r= -

 · ( ) ( )
t

v
d

d
, 1

which derives frommass conservation, and the Euler equation:

r+  = -  +
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which derives fromNewton’s second law (momentum conservation). In the case of superfluid helium thinfilms,
v is the superfluid flow velocity, r  h is thefilm height, = ag

h

3 vdw
4 is the linearizedVan-der-Waals acceleration
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[28, 49], andC=0. In the case of Bose–Einstein-condensate hydrodynamics in the Thomas-Fermi-limit at zero
temperature [50, 51],


v is again the flow velocity, ρ is the density, g g MBEC

2 describes the coupling strength,
whereM is themass of an individual atom contributing to the condensate, gBEC the atom–atom coupling, and
= -


C U M describes the trapping, withU being the extended potential [50] (see appendix, table C2).

We assume small perturbations in the density (BEC) orfilmheight (helium), η, from an equilibrium ρ0,
r r h= +
 ( ) ( )r t r t, ,0 with h r 0. Equations (1) and (2) respectively become:

h r h= -  - 
   ˙ · ( )v v , 30

and

h+  = -  +
    ˙ ( · ) ( )v v v g C, 4

wherewe used the chain rule on the rhs in equation (2). Substituting g r =g c RT2
0, whereR is the specific

gas constant,T the gas temperature and c the speed of sound, wefind that the above equations are the linearized
Euler and continuity equations, describing small amplitude soundwaves in an ideal gas in the isentropic limit
[52] (see appendix B for derivation). This allows us tomodel themusing theAeroacoustics Linearized Euler,
FrequencyDomain (lef)module in COMSOL,with appropriate boundary conditions (see appendixD.1). This
provides the sound eigenmodes for an arbitrary bounded geometry. Examples of eigenmodes on a circular and
an irregularly shaped two-dimensional resonator with free (‘Neumann’) boundaries are shown infigure 1(a) [45]
(see appendixD.1). In this work, we analyse vortices and soundmodes in two-dimensional domains, as this
applies to experiments [31, 45, 53] and allows a qualitative discussion of the interaction.However, by choosing
the appropriate dimension in the FEM-simulation, themodel could be generalized to three dimensions. The
finite-element-method allows us to add a background flowfield, corresponding to theflow generated by
quantized vortices, and find the new sound eigenmodes in the presence of that backgroundflow.

2.2.Quantized vortices
A single vortex is described by a quantized circulation around a loop encompassing the vortex core [54, 55] :

k=
 ∮ · ( )v ld . 5v

Here,κ=2πÿ/M is the circulation quantum. This ensures that the phase acquired by thewave function upon
propagation around any loop encompassing the vortex core equals 2π.


vv denotes the vortex-induced velocity

field. For the simple case of a point vortex on a plane, the solution is:
k
p

= q
 ( ) ˆ ( )v r

r
e

2
, 6v

where qê is the unit vector in the tangential direction and r the distance from the vortex core. In this work, we
describe the quasi-static regimewhere themotion of vortices during a sound oscillation period is negligible. This
is valid in the limit of pinned vortices [31, 33, 56] or low vortex densities where the velocity of theflowfield due
to neighbouring and image vortices is significantly less than the speed of sound. For Bose–Einstein condensates
at zero temperature, the sound velocity c=ÿ/Mξ, where ξ is the healing length, equals the Landau critical
velocity [51]. Therefore the quasi-static approximation in Bose–Einstein condensates is valid if the separation
between neighbouring vortex cores is significantly larger than their core diameter. This condition is typically

Figure 1. (a) Finite ElementMethod (FEM)modelling of the sound eigenmodes existingwithin a circular (left) and an arbitrarily
shaped domain (right), with free boundary condition (see appendixD.1). Left: Bessel (m=1; n=2)mode. Right: Lowest-frequency
eigenmode of the geometry. The colour code represents themagnitude of the displacement. (b) FEMmodelling of theflow field
generated by point vortices within the domains shown in (a). Left: simple case of theflow field of an off-centred clockwise (CW)point
vortex in a circular domain (see appendix A.1). Right: flowfield due to twoCWand one counterclockwise (CCW) point vortices.
Surface colour-code and red arrows show the vortex flow velocity, in log scale.White lines represent the streamlines of the unrotated
electric displacementfield


D , which are potential lines for the superfluidflow. (c)New ‘deformed’ (m=1; n=2) eigenmode of the

circular geometry in the presence of the backgroundflowdue to a large number of off-centred vortices located at a point with radial
offset of 0.7R, whereR is the resonator radius.
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fulfilled, and the sound velocity, with typical values of a fewmm s−1 [57, 58] is significantly higher than the
backgroundflowvelocity caused by a typical ensemble of vortices [13, 53]3.

In comparison to equation (5), Gauss’s law of electrostatics in two dimensions reads:

=
 ∮ · ( )D n Qd , 7

where


D is the electric displacement field andQ the line charge. By rotating the electric displacementfield and
replacing it with the flowfield


vv

 -
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

D
D

v
v , 8

x

y

vy

vx

and substituting kQ , we retrieve the quantized circulation of the vortex defined in equation (5), where
= +

 ˆ ˆv v e v ev v x x v y y, , . This provides the analogy between electrostatics and vortex flow [54]. A point charge is a

source of divergence (source/sink) for the electric displacement field


D. As is known frompotential flow theory,
upon the permutation shown in equation (8), a point charge becomes a source of quantized circulation.We
model these equations using theElectrostatics(es)module of COMSOL,which allows us to determine the vortex
flowfield on any two-dimensional geometry. Examples for vortexflowfields on a circular and on an irregular
geometry are shown infigure 1(b). Depending on the number of vortices, their positions, and the resonator
geometry, the sound eigenmode shapemay be significantly altered due to the presence of the vortices. Such an
example is shown in figure 1(c). Similarly, quantized circulation around amacroscopic topological defect in a
multiply-connected domain can bemodelled as shown in section 4.

2.3. Sound-vortex interaction
Wecan understand the interaction of soundwaves and vortices through the change in the kinetic energy of a
soundwave caused by addition/subtraction of a vortex. The soundmodes are orthogonal to vortex flowfields,
which are fully defined by the rotation around the vortex core (see figure 2 (b)). Therefore, the overlap of vortex-
and sound velocityfields is zero:

ò =
 · ( )v v Ad 0, 9

A
v s

whereA is the area of the domain and

vs is the two-dimensional sound velocity distribution. This appears to

suggest that there is no coupling between the twoflowfields. However, interaction arises due to the change in

Figure 2. (a) Illustration of theflowprofile of sound in superfluid. (b) Streamlines of a 2Dpoint vortex (red dot) in the plane. (c)
Vortex flow (red) and sound flow (black).When sound and vortex flowfields are confined inside a resonator geometry (see figure 6),
interference effects arise. Destructive interference (left) and constructive interference (right), in the presence of amode-induced
height gradient, causes an interaction between vortex and sound. The vertical axes in (a) and (c) can refer to density in a Bose–Einstein
condensate, or the filmheight in a superfluid helium thinfilm.

3
The orbit periodT for a single vortex offset from the centre of a circular resonator of radiusR by a distance x is = -p

k
( )T R x4 2 2

2
. For

superfluid helium thin film resonators withR;10−5m, this corresponds to typicalHz orbit frequencies compared to typical 105Hz third-
sound frequencies [30].

4
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film height (helium) or density (BEC) associatedwith the soundwave. The interactionmanifests in a splitting of
sound resonances due to the presence of vortices, and thus constitutes a dispersive (frequency-shifting)
interaction [59]. An example is shown infigure 2(c), where, due to increased density/height on one side of the
vortex, the increased kinetic energy due to velocity addition on the right side of the vortex is not fully
compensated by the reduction in kinetic energy due to velocity subtraction on the left, resulting in a net increase
in energy due to the interaction.

We use equations (3) and (4) to calculate the new eigenmodes of sound in the presence of the time-
independent background flow


vv, assuming a stationary configuration of vortices, withflowfield

 ( )v rv . In this
case, the totalflowvelocity is = +

     ( ) ( ) ( )v r t v r v r t, ,v s , where

vs is theflowfield associatedwith the sound

eigenmode. The interaction of persistent currents with soundmodes has been quantified for simple, centred
vortex distributions on a disk-shaped resonator in superfluid helium thinfilms [31, 34] and for centred vortices
in different trap shapes in Bose–Einstein-condensates [36, 37], but until now there has not been a consistent
approach formodelling of a non-trivial vortex distribution in a non-trivial resonator shape, or formultiply
connected domains.We confirm the accuracy of thisfinite element based approach through the comparison
with an analytical expression derived for third-sound-vortex interactions on a circular resonator (see
appendix A).

3. Results

To give an experimentally relevant example, in the followingwe study the interaction of a quantized vortexwith
soundmodes in a disk-shaped resonator with a free (‘Neumann’) boundary condition (see appendixD.1). This
analysis is applicable to geometries used in superfluid helium experiments [30, 44, 45]with amicrotoroidal
optomechanical resonator ofR∼30 μmradius (see figure 3(a)), those of [31, 56, 60, 61], and also experiments
with two-dimensional Bose–Einstein-condensates, which are confined by a hard-walled trap [53].

Regarding the experimental readout of soundmodes, in experiments with helium thinfilms, the Brownian
motion of third soundwaves, even atmillikelvin temperatures, is high enough to be resolved experimentally in
real time [30]. Alternatively, the amplitude of third sound can be tuned by laser heating or cooling [30],

Figure 3. (a) Schematic of amicrotoroidal resonator of radiusR=30 μmcoveredwith a superfluid helium thinfilm, with one
quantized vortex offset from the disk origin. The red dot indicates the vortex core. (b) Illustrated frequency splitting of a Besselmode
due to the presence of a vortex. (c) Frequency of the co- and counter-rotating (1, 8)-Besselmode, with one quantized vortex on the
resonator, as a function of radial vortex position. (d) Frequency splitting dependence of (1, 3), (1, 5), (1, 8), and (5, 4) third-sound
modes on the radial offset of the vortex from the disk origin. Spatial profiles of themodes are shown as insets. (e)Displacement
amplitudes ofmodes shown in (d) as a function of radius. Inset: annular region cut out by a circle, with its radius defined by the vortex
position—whose interactionwith the vortex accounts for themajority of the splitting (see text). All plots use free boundary condition
for themodes; each dot in (c) and (d) represents the result of a FEM-simulation.
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amplified by optical absorption heating [44], or electrically excited [31]. For Bose–Einstein condensates,
collectivemodes can be excited by perturbing the condensate, locally exceeding the critical velocity [62].

Solutions of thewave equation on a circular resonator are Besselmodes of thefirst kind. They are fully
quantified by their azimuthal ( m 0) and radial ( n 1)node counts.Modeswith ¹m 0 can be decomposed
into opposite direction travellingwaves, that, in the absence of circulation, are degenerate. The presence of a
vortex lifts the degeneracy, shifts themode co-rotatingwith the vortex flow to a higher frequency, and the
counter-rotatingmode to a lower frequency (seefigure 3(b)). This frequency splittingΔf is experimentally
resolved if it is larger than the decay rateΓ of the Besselmode. As the radial distance of the vortex from the centre
of the disk, rv, increases, the splitting reduces. Firstly, this results from the lower total energy of the vortex flow
field as the vortex core approaches the boundary. Secondly, from symmetry arguments the overlap between
sound and vortexflowfields ismaximized for a centred vortex. The radial dependence of themode shifts is
plotted for the (m,n)=(1, 8) free-boundary-condition Besselmode infigure 3(c). Each point corresponds to
one result of the FEM-simulation, as the vortex is stepped outwards from the centre. As the vortex reaches the
outer boundary, the splitting vanishes.

We then compare the results from the FEM-model to the perturbative analytical approach derived in
appendix A.Wefind that the two approaches agree reasonably well, with the discrepancy always less that 10%of
themaximal splitting at rv=0 (see appendix A).We ascribe the difference to a vortex-induced change in the
mode shape due to the nonlinear 

  ( · )v v term in equation (4):

 =  +  +  + 
              ( · ) ( · ) ( · ) ( · ) ( · ) ( )v v v v v v v v v v . 10v v s s v s s v

The analytic perturbation theory neglects all of these terms. The FEMmodel neglects only 
  ( · )v vs s, which is a

requirement to obtain eigenmodes for the soundwaves. This approximation is justified in the small sound
amplitude limit h r 0, where the sound-induced superfluid flow velocity vs (see equation (A.4)) is small
compared to the vortex flow velocity vv.

Figure 3(d) shows the splitting per vortex as a function of vortex radial position for four different Bessel
modes. Critically, the presence of a vortex affects each Besselmode in a unique fashion. Leveraging this unique
fingerprint, thework presented here enabled both the number and the spatial distribution of vortices in a cluster
to be extracted independently, by tracking several soundmodes simultaneously [45].

One conceptual result of the perturbative analysis is an expression for the frequency splitting that depends
only on the profile of the Besselmode and the radial position of the vortex, and is independent of the details of
the vortexflowfield. In the case of a single vortex the expression is:

ò

ò

k
p

h

h
D =

( )

( )
( )f

m r

r r r2 d
, 11r

R r

r

R2

d 2

0
2

v

wherem is the Besselmode azimuthal number, rv is the radial position of the vortex, and h z= ( )( )r Jm m n
r

R, is

the radial displacement profile of the Besselmode. Jm is the Bessel function of thefirst kind of orderm, andm and
n are respectively the azimuthal and radialmode orders, ζm,n is a frequency parameter depending on themode
order and the boundary conditions [63]. As vortex flowfields are subject to linear superposition, we obtain the
total splitting simply by adding contributions from single vortices:D = å Df fi itotal . An interpretation of this
result is that the splitting introduced by a vortex at position rv is equal to the interaction energy between a centred
vortex (rv=0) and a soundwave in the region of the diskwith radius greater that rv. So, in some sense, only the
fraction of the soundwave at radius larger than the radial position of the vortex core contributes to the splitting.
This explains why the splitting per vortex drops rapidly with rv for lowm, high n order soundmodeswhose
kinetic energy is located close to the centre of the disk, while the splitting is sustained at higher radii for higherm,
lower n ordermodeswhich aremore radially extended.

4. Requirements for detection of single vortices/circulation quanta

In this section, we investigate the feasibility of observing the quantization of circulation in two-dimensional
superfluid heliumdue to the shift in sound frequencies induced by the addition/subtraction of a single vortex.
Remarkably, while quantized vortices are central to the behaviour of two-dimensional superfluids, they have yet
to be directly observed in two-dimensional helium. The experimental challenge is significant: the normal-fluid
core of a vortex in superfluid helium-4 is roughly oneÅngström in diameter [49], the thickness of a superfluid
heliumfilm is typically less than 20nm, and the refractive index of liquid helium is close to that of vacuum
(nHe≈1.029). Combined, these characteristics prevent direct optical imaging, as can be performed in Bose–
Einstein condensates [47, 64]. In bulk helium,many imaging techniques have relied on the use of some kind of
tracer particle [65–67], such as, for instance,micrometer-sized frozen hydrogen crystals. These scatter light and
are pulled in to the vortex core, enabling, for example, the recent observation of Kelvinwaves [67] in bulk.
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Naturally, such an approach is significantlymore difficult in two-dimensional films due to their few-nanometre
thickness.

In order for the vortex-induced frequency splittingΔf (equation (11)) experienced by a third-soundwave
[31, 60] to reveal quantized steps, several challengesmust be addressed.

First, in order to be resolvable, the splitting should be larger than the linewidth of the third-sound
resonances,ΔfΓ, as shown infigure 3(a). Second, anymotion of vortices on the resonator surface, as we
experimentally observe elsewhere [45], will lead to a continuous evolution of the splitting due to the continuous
nature of the splitting functionΔf (rv), see figure 3(c), whichmaymask the quantized nature of the circulation.

Thefirst challenge can bemet by engineering devices that are sufficiently small, whichmaximizesΔf by
increasing the vortex-sound coupling, and by controlling dissipation in these devices in order to reduceΓ. This
can be achieved, for instance, by engineering a smooth resonator that is decoupled from its environment by a
small connection point [30], or through careful choice of the resonator substratematerial [68]. Indeed,Δf∼Γ
has been recently reported experimentally usingmicroscale on chip optical cavities [45]. A solution to the second
challenge is to constrain the position of the circulation around amacroscopic topological defect engineered on
the surface of the resonator. For instance, if we replace the topological defect naturally formed by the normal
fluid core (of radius a0) of a superfluid vortex by amicrofabricated hole of radius R a0, themaximal velocity
due to the quantized circulation becomes k

p
k
p


R a2 2 0

(see equation (5)). This effectively clips the high velocity
region of theflow and is thus energetically favourable. The circulationwill then preferentially accumulate
around thismanufactured defect, up to large values ofκ=h/mHe, as has been observed in the spinning up of
bulk helium in an annular container [69, 70]. The quantization of the circulation thenmanifests as quantized
values of the splitting experienced by third-soundmodes confined to the surface of the resonator.

This approach is in essence a two-dimensional analogue of Vinen’s experimental technique for the first
observation of circulation quanta in bulk helium [71, 72], where circulation trapped around a vibratingwire
lifted the degeneracy between thewire’s normalmodes of vibration. Infigure 4, we propose a practical
realization of such a device based on a circular whispering-gallery-mode geometry, as used in our previous work
[30, 44].We utilise the FEM-simulation to design a domain thatmaximises the splittingΔf, consisting of a
single-spoked annular geometry [73] (seefigure 4(c)).

Next we calculate the superfluid flowfield resulting fromquantized circulation about the central topological
defect, as shown in figure 4(c). For clarity, we assume that this pinned circulation is the only source of circulation
on the structure, i.e. there are no vortex cores on the domain. This is calculated through FEM simulation using
the ‘floating potential’ boundary condition for the inner boundary, which enforces both the prescribed
circulation strength and parallelism of theflow to the boundary (see appendixD.1 formore details). The results
are shown infigure 5(a). Theflow is essentially confined to the outer annulus, with negligible flowup and down
the spoke and in the central disk. This can be understood by considering the closed contours 1 and 2which both
enclose the central hole. The circulation around both contoursmust therefore be equal (see equation (5)),
implying negligible additional circulation along the extra path contained in contour 1.

Figure 5(b) shows an example of a third-soundmode of this spoked resonator (which becomes the (1, 2)
eigenmode of a circular resonator as the central hole gets vanishingly small). The presence of the spoke, which
connects the annular outer ring to the device pedestal, lifts the degeneracy between the twonormalmodes, even
in the absence of circulation. Themode that has a stronger interactionwith the spoke (bottom) experiences an
effectively larger resonator and therefore has a lower resonance frequency.

Figure 4.Topological defect in a disk-shaped resonator geometry. (a)Top-view of an annular-shaped superfluid optomechanical
resonator [63]. Blue shade represents the disk, while the dashed grey region symbolizes the device’s pedestal. Red contoursΩ1 andΩ2

represent closed loops around holes in the resonator. (b)Cut-view through the dashed green line in (a), illustrating how contourΩ1

can be continuously deformed and collapsed, while contourΩ2 cannot and encloses therefore a real topological defect. (c) Single-
spoked annular disk geometry [73], whose central hole is topologically identical to that enclosed by contourΩ2.
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Infigure 5(c), we showhow this native geometric splitting [60] affects the third-soundmode splitting as a
function of the circulation around the central hole. Each black dot represents a finite element simulation of the
splitting between the high and low frequency eigenmodes shown infigure 5(b), as a function of the number of
circulation quanta around the central defect. This total splitting can bewell reproduced through an analytical
expression of the form [33]:

= + ( )s s s , 12total circ
2

geo
2

where sgeo=700Hz is the native geometric splitting for this device (dashed orange line), = ´s N scirc circ,0 the
total circulation-induced splittingwithNbeing the number of circulationquanta and scirc,0 is the splitting per
quantum.The solid red line represents stotal, as given by equation (12). Infigure 5(d), weplot the experimentally
relevant parameter, which is the splitting increment due to each additional circulationquantum, as a function of
thenumber of circulation quanta alreadypresent around the defect. This shows that the geometric splitting due to
the spoke (or any unwanted deviation fromcircularity)willmask the influenceof the circulation-induced splitting
for small values of the circulation quanta, and reduce the visibility of the steps. For larger values of the circulation,
the size of the stepswill asymptote towards the value =s 54 Hzcirc,0 , as the appropriate normalmodebasis
gradually shifts fromorthogonal standingwaves to counter-propagatingwaves. Such a large quantized circulation
can be experimentally achieved by creating a strong superfluidflow, locally exceeding the critical velocity—for
instance by local evaporation of superfluidorby strong driving of third-soundmodes [30, 44, 45]. Alternatively, a
sub-criticalflowcanbeused to create a highpersistent current by reorganizing pre-existing vortex pairs through
theMagnus force [31]. InBose–Einstein condensates, vortices canbe created inhighnumbers by laser stirring [74].

We show that the proposed device would yield quantized steps in the third-soundmode splitting on the
order of 50 Hz, a value within reach of current experimental resolution [30, 45]. Note also that since the strength
of the vortex-phonon interaction scales inversely with resonator area (see appendix A.3) themagnitude of the
splitting can be greatly enhanced by going towardsminiature third-sound resonators. This is illustrated in
figure 7, which shows the splitting per centred vortex on the (1, 2)Besselmode as a function of resonator radius.
While only of the order ofmilli-Hertz for early cm-scale capacitively detected third-sound resonators [60, 61]

Figure 5. (a) Left: Superfluidflow field resulting fromquantized circulation, pinned on the topological defect, with no additional
vortices on the domain (red arrows). The colour code represents themagnitude of the velocity (red: fast; blue: slow). Right: contours 1
(blue) and 2 (red) both enclose the central defect and therefore have identical circulation (equation (5)). Dimensions of the resonator
used for simulation: outer radius=20 μm; inner radius=4 μm; slot width=2 μm; spokewidth=0.5 μm. (b)Non-degenerate
eigenmodes of the spoked resonator, split by the presence of the spoke, with free boundary conditions at both boundaries. colour code

represents themagnitude of the surface displacement. (c)Contribution to the totalmode splitting (red, = +s s stotal circ
2

geo
2 ) from

geometric (dashed orange, sgeo=700Hz) and circulation (blue, scirc=N × scirc,0=N×54Hz) contributions, as a function of the
number of circulation quanta present around the topological defect. Note that the number of circulation quanta considered here is
consistent with vortex numbers observed in experiments with helium-coatedmicroresonators [45]. (d) Splitting increment per added
circulation quantum.
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(red and orange dots), it reaches tens to hundreds ofHzwithmicrotoroidal resonators [30, 45] (blue dot), and
would attain tens of kHzwithmicron-radius resonators [75–77] (black dot).

5. Conclusion

Wehave developed finite-elementmodelling tools to compute the interaction between any vortex flow and any
soundwave, in arbitrary and potentiallymultiply-connected two-dimensional domains. This capability offers
great versatility, applicable to both BEC superfluids and to thin-film superfluid helium. There is a need for
numerical techniques to determine vortex and sound velocity fields and their interactions. In both cases,
analytical solutions for the vortexflowfield only exist if the domain exhibits a high degree of symmetry. Even if
such solutions exist, when departing from simple geometries like a disk, the implementation of themethod of
images in order to cancel the normal component of the vortexflowon the resonator boundary [78] becomes
challenging, and one needs to rely on conformalmapping techniques [53, 79]. Formultiply-connected domains,
solutions often require an infinite series of images as the domain possesses two ormore boundaries, and
analytical solutions are only available for simple limit-cases such as a centred annular domain [70].

We verify the validity of our approach by comparing its results to a perturbation theory analysis whichwe
derive in the analytically tractable case of a circular resonator geometry.We derive in this case a useful simple
analytical formula, which can be used to compute the vortex-sound coupling for arbitrary configurations of
vortices on a disk, without requiring the vortexflowfield. Understanding precisely how superfluid vortices and
persistent currents couple to soundwaves—at the level of a single vortex or circulation quantum—is a crucial
capability to shed light on the physics of strongly interacting superfluids, and perform continuous non-
destructivemeasurements of vortex dynamics in these systems [45].

Themodelling techniques presented heremay help shed light on the validity of phenomenologicalmodels
such as the point-vortexmodel [80, 81] in superfluids, as well as further our understanding of quantum
turbulence [13–16] and energy dissipation in superfluids [56, 82, 83].
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AppendixA. Analytical derivation of the vortex-sound coupling

A.1. Analytical description of the point vortexflowfieldvv

The streamfunctionΨ of a point vortex of strengthκ in a 2Dplane is Y = - k
p

( )rln
2

. The streamfunctionΨ for

the thewell-known problemof a point vortex inside a circular domain [78], is given in cartesian coordinates by:
k
p

Y = - - + - - +( ( ( ) ) ( ( ) )) ( )x X y x X y
2

ln ln . A.11
2 2

2
2 2

HereX1 is the radial offset of the vortex (along the x axis), and =X R

X2
2

1
is the radial coordinate of the opposite

circulation image-vortex required to enforce noflow accross the resonator boundary [78]. From the
streamfunctionΨ, the vortex velocity components are given by:

=
¶Y
¶

= -
¶Y
¶

( )v
y

v
x

; and . A.2vx vy

Using equation (A.2), we plot infigure 6(a) theflow streamlines of a vortex offset byR/2 inside a circular
resonator of radiusR.

A.2. Analytical description of the soundflowfieldv3

In the following, for simplicity we derive the analytic expressions for helium thin films (i.e. third-soundwaves).
However, the analysis can be applied to BECswith a straightforward replacement of variables (see appendix C).
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The complex surface displacement amplitude η of a travelling superfluid third-soundwave (or alternatively
the sound-induced density fluctuations for a BEC) in a circular domain are given by [63]:

h q h z= qW⎜ ⎟⎛
⎝

⎞
⎠( ) ( )( )r t J

r

R
, , e . A.3m m n

m t
0 ,

i

The associated superfluid flow speed

v3 is given by:

h= 
W


 

( )v
i c

h
A.43

3
2

0

with ‘+’ and ‘−’ signs respectively corresponding to theCWandCCWtravelling cases, as in equation (A.3). Note
thatwhile themotionof a solid circularmembranewould also be givenby equation (A.3), its velocitywould be
different to equation (A.4), leading to dramatically different effectivemass scalings [63]. The surface displacement
profile h( )R and instantaneous velocityfield

( )R v3 are plotted infigure 6(b), for aCW (m=1,n=2)Besselmode
with free boundary conditions.While such a third-soundmodeflow is irrotational and thereforenot associatedwith
any circulation ( =

 
∮ ·v ld 0 for any closed loop inside the superfluid), it is associatedwith a netmassflow (in the

CWcase, there ismorefluidmoving clockwise under thewave peak (red) than counter-clockwise under the trough
(blue), and similarly there is netCCWfluidmotion for theCCWmode). It is this netmassflowwhich couples to the
vortexfield, and results in ahigher kinetic energy for the soundmode travelling in the samedirection as the vortex
flow.This argument is developed in the analytical splitting calculationdetailed below.

A.3. Analytical description of vortex-sound coupling
Herewe derive an analytical expression for the frequency splitting experienced by a third-soundmode due to a
vortex inside a circular resonator, and show good agreement with the results of the FEM simulations shown in
figure 3. This is a valid approximation to the FEM-model if the change inmode shape due to vortices is small.

The kinetic energy differenceD ( )E t between a soundwavemovingwith- or against the flowof a quantized
vortex is given by:

ò ò òr qD = + - -
q

p h q

= = =

+        ( ) (∣∣ ( ) ( )∣∣ ∣∣ ( ) ( )∣∣ ) ( )
( )

E t v r t v r v r t v r r r z
1

2
, , d d d . A.5

r

R

z

h r t

v v
0

2

0 0

, ,

3
2

3
2

0

This general expressionworks for any soundmode and any vortex position.Making the reasonable assumption
that


v3 and


vv are independent of z, as the inviscid nature of the superfluid precludes any in-plane vorticity and

does not require cancellation of the horizontal velocity at z=0 (no-slip boundary), equation (A.5) becomes:

ò òr q q h q qD = +
q

p

= =

 ( ) ( ) · ( )( ( )) ( )E t v r t v r h r t r r2 , , , , , d d . A.6
r

R

v
0

2

0
3 0

Since both v3x and vvx aswell v3y and vvy are functions of θ of different parity (see figure 6), =
 ∬ ·v v 0v3 , and

equation (A.6) becomes:

ò òr q q h q qD =
q

p

= =

 ( ) ( ) · ( ) ( ) ( )E t v r t v r r t r r2 , , , , , d d . A.7
r

R

v
0

2

0
3

Figure 6. (a) Streamlines of
 ( )v rv for aCWvortex (green dot) offset from the origin (red dot) in a circular domain. (X1=0.5R;

X2=2R). (b)Black arrows represent the instantaneous superfluidflow field
 ( )v r3 , for a clockwise-rotating (m = 1; n = 2)Bessel-

modewith free boundary condition. Surface plot shows the associated surface deflection h
( )r (colour code: red = positive,

blue = negative). CWnature can be seen by noticing thefluid starting to accumulate ahead of the red peak, where  <
 · v 03 . The

velocity field is positive under the peaks, negative under the troughs, and irrotational, i.e. with =
 

∮ ·v ld 03 for all contours inside the

superfluid. (c)Vector field of h´
  ( ) ( )v r r3 .While from symmetry one sees that =

 ∬ ·v v 0v3 , multiplication by the surface
deflection profile h

( )r leads to a non-zero energy shift of theCW/CCWthird-soundwaves, see equation (A.7).
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This is essentially a formof surface-averagedDoppler shift, weighted by the displacement amplitude η of the
mode.Next, we consider the time-averaged energy difference áD ñE , averaged over a sound oscillation periodT:

ò ò ò ò òr q h háD ñ = D = +
q

q q
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )E

T
E t t r r v

T
v t v

T
v t

1
d 2 d d

1
d

1
d , A.8

T

r
vr

T

r v

T

0 0
3

0
3

wherewe have broken down

v3 and


vv into their radial and angular components, respectively v3r and v3θ, and vvr

and vvθ. From equations (A.3) and (A.4), we note that v3r and η are out-of-phase, while v3θ and η are in phase. The
first integral over time in equation (A.8) reduces therefore to zero, while the second integrates to hq∣ ∣∣ ∣v1

2 3 .We
therefore get from equations (A.3) and (A.4):

ò ò
r

h
z

qáD ñ =
W q

p
q

= =

( )
( )E

m c

h
r r

J

r
vd d A.9

r

R m m n
r

R
v

3
2

0 0
0
2

2
,

0

2

whichwe rewrite, with h h z= ( )( )r Jm
r

R0 m,n , as:

ò ò
r

h qáD ñ =
W q

p
q

= =
( ) ( )E

m c

h

r

r
r v r

d
d . A.10

r

R

v
3
2

0 0

2

0

2

Wenotice here that the integral over θ corresponds to a closed contour integral
 

∮ ·v ldv , where the contour is a
circle of radius r centred at the origin. From equation (5), we know that the value of this contour integral is zero if
it does not enclose the vortex core, andκ if it does. The transition occurs for r=offset, the radial offset of the
point vortex.We can therefore rewrite equation (A.10)with amodified radial integration lower bound:

ò
r k

háD ñ =
W =

( ) ( )E
m c

h

r

r
r

d
. A.11

r

R
3
2

0 offset

2

Since for a harmonic oscillator E is proportional toΩ2, =D DW
W

2E

E
and the splittingΔf (inHz) equals:

p
D =

W D ( )f
E

E4
, A.12

with the kinetic energy E of the third-soundmode, form>0, given by [63]:

ò òr
p r

h= =
 ( ) ( ) ( ) ( )E v r r

c

h
r r r

1

2
d

2
d . A.13

R
2 3 3

2

0 0

2

Combining equations (A.10) and (A.13), we recover the result shown in equation (11) of themain text:

ò

ò

k
p

h

h
D =

( )

( )
( )f

m r

r r r2 d
. A.14

R r

r
R2

offset

d 2

0
2

Wenote that, as expected, the splittingdoesnotdependon the superfluidparameters (film thickness, density), and that
it is linear in vortexflowfield (see equation (A.6)), such that the splittingobeys the superpositionprinciple,whereby the
splittingdue to an ensembleof vortices is equal to the sumof the splittingsper vortex calculated individually. The result
equation (A.14)holds for both superfluidheliumthinfilms andBose–Einstein condensates,withηbeing thefilm
thickness perturbation/density perturbation, respectively.Wenumerically verify this result in theFEMsimulations,
where linearity is generallymaintainedup to large vortex charges on theorderof∼102 κ, as shown infigures 7(a) and

Figure 7. (a)FEMsimulationof frequency splittingof the (m=3,n=1)Besselmodedue to a centredvortex,whose charge is increased
fromκ to>200 κ, displaying linearityover that range. (b)Splittingper centredvortex for the (m=1,n=2)Besselmodewith freeboundary
conditions, as a functionof resonator radius. Experimental devices shown in red [61] andorange [60] correspond to cm-scale capacitively
detected third-soundwaves. Bluedot corresponds to anopticalWGMmicrotoroid resonator [30, 45]. Blackdot shows twoadditional orders
ofmagnitude improvementover current state-of-the-art canbe achievedbygoing tomicron-radiusWGMresonators [75, 76].
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(b).Note that equation (A.14)doesnotdiverge as the vortexoffset tends to 0, as h =( )0 0 for allm>0Besselmodes.
Interestingly, due to the contour-integral identityused in equation (A.10), thefinal result doesnot require any
knowledgeof the vortexflowfield


vv. Figure 8 shows a comparisonof the analytical and theFEMapproaches, in the

caseof a circular resonator geometry.

Appendix B.Derivation of linearized equations for an ideal gas

For the ideal gas,mass conservation andmomentum conservation read, respectively [52]:

r
r= -

 · ( ) ( )
t

u
d

d
B.1

and

r
+  = - 

    
( · ) ( )u

t
u u p

d

d

1
, B.2

where
 ( )u r t, is the flow velocity, ρ is the gas density and p the gas pressure. Isentropicflow (i.e. the gas is in

thermal equilibrium at all times) for an ideal gas implies [52]:

g r g= = ( )p RT c R Tand , B.32

whereR is the specific gas constant,T is the gas temperature and c is the speed of sound.We insert equation (B.3)
in (B.2) and linearize for small density fluctuations, r r a= +

 ( ) ( )r r0 with a r 0, and recover equations (3)
and (4) in themain text.

AppendixC. Comparison tables

Herewe showhowquantities and equations from2D-electrostatics can bemapped to vortex-induced flow
fields, and how acoustics of an ideal gas ismapped to third-sound dynamics.

Figure 8.Comparison between the results of the FEM simulations and the analytical approach (equation (A.14)) for four different
Besselmodes labelled by their (m, n) order, showing good agreement between bothmethodswithout any scaling parameter.
(Resonator dimensionR = 30 μm,fixed boundary conditions). Some small quantitative differences between both solutions remain.
For instance from equation (A.14), the analytical splitting has to be amonotonically decreasing function of the radial offset, while the
FEMcalculation shows some regions of increased splittingwith radial offset.We ascribe these differences to vortex-induced changes
in the eigenmode shape (seefigure 1(c)), which are not taken into account in the perturbative analytical approach.
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AppendixD.

D.1. Boundary conditions
In order to solve differential equations on the surface of a two-dimensional resonator, constraints at the
boundary have to be specified. Depending on the type of confinement provided by the resonator, the boundary
for third sound can be described either by afixed (‘Dirichlet’) or a free (‘Neumann’) boundary condition. Afixed
boundary condition η=0 allowsflow in and out of the resonator and the film height at the boundary isfixed to
the equilibrium film height. The free boundary condition =

 ·v n 03 , where

n is the normal vector on the

boundary, allowsfilmheight fluctuations at the boundary and prohibitsflow in or out of the resonator. In
COMSOL, for an ideal gas, the free boundary condition corresponds to a rigid wall, where volume is conserved
and the gas pressure can oscillate freely at the boundary. Thefixed boundary condition corresponds to fixed
pressure, where the gas pressure isfixed at the boundary and the gas can freely flow in and out of the domain [84].
The vortexflow is tangential to the boundary, =

 ·v n 0v . In the electrostatics analogue, this translates to an
electric fieldwhich is exactly perpendicular to the boundary, with no tangential component. This corresponds to
a perfect electric conductor at the boundary and can be realized by choosing the ground—boundary condition in
COMSOL [85]. In order tomodel a quantized circulation n×κ around a topological defect in the structure, the
floating potential boundary conditionwith built in chargeQ=n×κmust be chosen. This boundary condition
enforces an electric field orthogonal to the boundary everywhere (due to the equal potential on the boundary), as
well as the condition:

Table C1.Electrostatics and vortexflow field. The system is
invariant under z-translation, hencewe use units and equations in
two dimensions.

2D-electrostatics Vortices

Electric displacement field Velocity field ( )D r (C m−2)
 ( )v rv (m s−1)

Electric line charge Circulation quantum

Q (C m−1) κ (m2 s−1)
Gauss’s law Vortexflow equation

=
 ∮ ·D n Qd k=

 
∮ ·v ldv

Perfect electric conductor (ground) Tangentialflowboundary

´ =
 

D n 0 =
 ·v n 0v

Table C2.Acoustics, sound dynamics in a Bose–Einstein condensate in the Thomas-Fermi limit at zero
temperature, and third-sound dynamics on a helium thinfilm. As in table C1, a two-dimensional system is
described.

2D-acoustics Sound in 2D-BEC Third-sound dynamics

Density perturbation Density perturbation Third-sound amplitude

a
( )r t, (kg m−2) h

( )r t, (kg m−2) h
( )r t, (m)

Static density Static density Unperturbed film height

ρ0 (kg m
−2) ρ0 (kg m

−2) h0 (m)
Background flow Irrotational vortexflow Irrotational vortexflow

( )u r0 (m s−1)
( )v rv (m s−1)

( )v rv (m s−1)
Irrotational flow velocity Sound flow velocity Third-sound flow velocity

d
 ( )u r t, (m s−1)

 ( )v r t,s (m s−1)
 ( )v r t,3 (m s−1)

Static pressure Atom–atom coupling LinearizedVdWcoefficent

p0 (J m
−2) gBEC (J m

2) = ag
h

3 vdw

0
4 (m s−2)

Speed of sound (acoustics) Bogoliubov sound velocity Speed of sound (thinfilm)
g=c RT (m s−1) r= ·c g MBEC 0

2 (m s−1) = ·c g h3 0 (m s−1)

Fixedwall boundary Fixedwall boundary Free boundary

=
 ·u n 0 =

 ·v n 0 =
 ·v n 0

Fixed pressure boundary Fixed density boundary Fixed boundary

p=p0 η=0 η=0
Continuity equation (acoustics) Continuity equation (BEC) Continuity equation (thin film)
a r a= -  - 

   ˙ · u u0 h r h= -  - 
   ˙ · v v0 h h= -  - 

   ˙ ·h v v0

Linearized Euler (acoustics) Linearized Euler (BEC) Linearized Euler (thin film)
a+  = - g

r

    ˙ ( · )u u u
RT

0
+  = -  + h     ( )˙ ( · )v v v U g

M M

1
BEC h+  = - 

    ˙ ( · )v v v g
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=
 ∮ · ( )D n dl Q. D.1

Upon the substitution of equation (8), this corresponds to a superfluid flow always parallel to the topological
defect boundary (i.e. nofluid inflowor outflow), and the quantized circulation condition:

k=
 ∮ · ( )v l nd . D.2

D.2.Notes on implementation inCOMSOL®multiphysics
In the followingwe describe how superfluid helium thinfilm can bemodelled using the FEM solver COMSOL®

multiphysics 5.0.
A 2Dmodel is set up. TheElectrostatics(es)module is used to simulate vortices and a stationary study is

created. The resonator outer boundary is set to ground. The circulation quantumκ is definedwith adjusted SI-
units ( - -m s C m2 1). At each positionwhere a clockwise vortex is to bemodelled, a line charge (out-of-plane)
ofQL=κ is inserted. A counter-clockwise vortex can bemodelled by replacing k k - .

Tomodel third sound, theAeroacoustics Linearized Euler, FrequencyDomain(lef)module is added and a
Eigenfrequency step is included in the study. In the first, stationary, study step, only the electrostatics interface is
solved for, whereas in the second step the Eigenfrequency solver is applied to the acoustics interface. Parameters
ρsf,Avdw, h0 and a= -g h3 vdw 0

4 [49] are defined to set the superfluid density ( -145 kg m 3 for superfluid
helium [86]), theHamacker constant of the substrate ( ´ - -2.6 10 m s24 5 2 for silica [63]), thefilm thickness and
the linearizedVan-der-Waals acceleration, respectively. The productRTγ=c2 is set to g·h0 for a uniform
superfluid film. Alternatively, a spatially varying function can be defined to reflect a non-uniform film thickness.
The boundary condition is set to either rigid wall or fixed pressure (see appendixD.1).

In order to include vortices defined in theElectrostatics(es) module, a critical velocity is defined
(vcrit≈60 m s−1 for superfluid helium [87]), and the acoustic background flowfield


u0 is set to:

=
-

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

u
u

D

D
, D.3

x

y

y

x

0,

0,

(whereD is the electric displacementfield solved for in thefirst step stationary solver), and truncated at
u0,max=vcrit. This vortex backgroundflowfield is treated as constant in time. The FEM-solver computes the
velocity perturbation d

 ( )u t , corresponding to the third soundmode, to the total
flow: d= +

     ( ) ( ) ( )u r t u r u r t, ,0 .
The gas density perturbation a

( )r t, calculated inCOMSOL® can be converted to third sound amplitude by
a normalization factor: a h=

 ( ) ( )N r t r t, , . It is extracted from

h =( ) ( )E k T , D.4pot,3 B mode

whereTmode is themode temperature. An analytical expression for the potential energy of a third soundmode
Epot,3 is given in [63]. For the simple case of a uniform film thickness and free boundary conditions the
conversion is given by

ò
r

r=
 · ( ) ( )N

A

k T
r r

3

2d
d . D.5vdw sf

4
B mode

2

Tmode is the effective temperature of the soundmode, whichwhen thermalizedwith its environment
corresponds to the fridge temperature. It can also be tuned through optomechanical laser heating/cooling [30],
increased through laser absorption heating [44] or electrical excitation [31].
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