nature .
thSlCS DOI: 10.1038/NPHYS3900

SUPPLEMENTARY INFORMATION

Superfluid Brillouin optomechanics

A.D. Kashkanova,! A.B. Shkarin,! C. D. Brown,! N. E. Flowers-Jacobs,! L. Childress,3
S.W. Hoch,! L. Hohmann,? K. Ott,? J. Reichel,? and J. G. E. Harris'*

1Depaurtment of Physics, Yale University, New Haven, CT, 06511, USA
2Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8, Canada
3Laboratoire Kastler Brossel, ENS/UPMC-Paris 6/CNRS, F-75005 Paris, France
4Department of Applied Physics, Yale University, New Haven, CT, 06511, USA

SIA OMIT/OMIA measurements

SI A.1 Theory

In this section we describe the theory of Optomechanically Induced Transparency and Optomechan-
ically Induced Amplification (OMIT/OMIA) measurements when a slow photothermal process exists in
addition to the usual optomechanical coupling. Using the same notation as the main paper, the standard
optomechanics Hamiltonian is

H = hwablo + hwsblbs + hgl® (bg + b))l da + hy/Fain (Sihda + sindl) (1)
where Kq ip, 1s the input coupling and s;,, is the amplitude of the incoming laser beam
Sin = (8in + Osin(t))e " 2)

Here 5y, is a strong “control” beam and ds;, (t) is a weak “probe” beam.
The Heisenberg equations of motion are

2 . - 2 2N A Ko
(o = —i(Wala + 957" (b + bY)ao + \/FamSin) — faa 3)
and: . . Vg -
bwrﬂw%+ﬁ%ma—§%—mﬁT )

with the damping rates . and g for the cavity field and the acoustic mode correspondingly. Since
OMIT/OMIA is a coherent measurement, the thermal noise of the acoustic mode (which is incoherent)
can be neglected. The last term in equation 4 describes the driving of the acoustic mode by changes in the
helium temperature §7". The acoustic mode is coupled to the temperature fluctuations with the coupling
rate g7 which has units of Hz/K. Furthermore, we assume that 67" undergoes simple relaxation towards
an equilibrium value set by the intracavity photon number.

0T = giadl G — Kn0T (5)
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In this equation gy, is the single photon heating rate in units of K/s, and xy, is the relaxation rate of the
temperature of the helium inside the cavity.
The two beams produce intensity beating with frequency Q0p ~ wg and with amplitude A, so

al G = o + (Ae™508 L cc) (6)

Here n,, is the average circulating photon number. We combine equation 6 with equation 5 and solve
for 0T, ignoring the constant temperature shift (due to n,,). The solution is

Gta Ae~ ¥t >
0T = —————— 4 c.c. 7
KRth (1—ZQD/I€th ( )

Plugging this back into equation 4 and ignoring the counter-rotating term proportional to et*?p? gives

S i ~ B 1 . ’Yﬁ ~
bs = —i (wsbs + go° o - ) gemint) — 1By 8
3 1<w55—|—go na+< +gT o 1 —iQ0 /m e 5 8 (8)
We now define 1
o, Gta g ta % 9
Jopt =9 Kin @+ QD/Féth ITop =97 wg’ ©)

where we’ve assumed that the thermal relaxation rate x4}, is much smaller than the drive frequency p.
The total coupling to the beat note part of the intracavity power is giot = g P14 igo. ft /90 By = 9% fa,
where G is defined as

g 7ﬂ
G=1+i-% (10)
90
With this modification, equation 4 becomes
by = —i(wsbs + 90 a + g7 G ALy — 72—566 (11)

Note that the equation of motion for a,, (equation 3) is not influenced by the inclusion of this photother-
mal process, because the action of the acoustic mode on the intracavity light is only via changes in the
He density, which are fully parameterized by 135 .

In the frame rotating at wr,, defining A = wr, — we, and redefining d,, and s, to be rotating at wy, as
well, we have
Ra .

— g (12)

éLa = ZAda — Zg(o)é’ﬁ(i)ﬁ + Bzg)da - Z.\/"goqinsin - 2

The steady state equations are

a = —1\/Kaq,inSin (13)

N
and 5
. Q = 2
_ —igy " |Gal
bg = ————— 14
s wg + 776 (14

where an effective detuning is defined: A = A — g B (bg + 5;‘3)
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Now we linearize the equations around the mean optical amplitude a, mean acoustic amplitude b and
average laser drive §;,,, by assuming G (t) = @ + daa(t), bg(t) = bg + dbg(t) and Sin = Sin + dsin(1).
Plugging this assumption into equations 12 and 4 and making use of equations 13 and 14 we have

Siia (1) = iDSaa (t) — igy™ (bs(t) + 0b],(t))aa — iy/Fam0sin(t) — ’i;(saa(t) (15)
Sbs(t) = —iwsdbs(t) — igS G (a*daal(t) + adal (1)) — lfcszaﬁ (16)

In the equation 16 we recognized that a*da, (t) + déd:& (t) is the term corresponding to the intracavity
power beat note that we’ve denoted as (Ae~**P* + c.c.) earlier, so its optomechanical coupling should
have the photothermal correction factor GG. The Fourier transform of equation 15 is

—iwia[w] = iA8aa[w] — g (Sbslw] + 80} [w])aa — iy/Famdsinlw] %5% W  a7)

By defining the cavity susceptibility
1

cav|W| =~ o~ 18
Xeav|w] Cw— AT (18)
and multiphoton coupling
9=97"a (19)
we can rewrite equation 17 and its complex conjugate as
bial] = —iXeas[t] (9(0bsl] + BB [w]) + \Famdsin[w]) (20)
6t ] = ixay —] (7 (00pl] + ODL[]) + /R msial]) @
Now we take the Fourier transform of equation 16
—iwdbslw] = —iwsdbslw] — iG(g*daalw] + gl w]) — %ﬁaéﬁ w] 22)
Combining equations 20 and 21
(9" 0[] + gdak ) =ilgl(3b3L] + Bb}{e]) (s [ 0] = Xenv[e]) o)

+ iv Ka,in (X:av[_w]ési*n [w]g — Xcav [w](SSin [w]g*)
Since 73 < wg, we can neglect the counter-rotating term o l;Tﬁ [w], which is peaked around —wg, so

A GM(XZW[_W](;S; [w]g — Xcav [w]ésin [w]g*)
Shglw] = ’ 24
ﬁ[W] —i(w — W,B) + 77'8 + G’gP(XCaV[w] - Xz);av[_w]) ey

Defining
i3[w] = Glgl* (xeav[w] = Xeav[-w]) (25)
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results in . . i}
] = OV (s (180 — e[l el o6
—i(w —wg) + 5 + iX[w]
In this notation the optical spring Awpg(opt) and optical damping g (opt) are correspondingly
Awg(opt) = Re[X[w]] 27
Ya(opt) = —2Im[E[w]] (28)

Now we calculate the amplitude and phase of the OMIA signal. In order to observe OMIT/OMIA
it is necessary to have two beams detuned by a frequency nearly equal to that of the acoustic oscillator.
As shown by equation 2, there are two beams in the system: a strong control beam and a weak probe
beam. The probe beam is detuned from the control beam by —¢2, where {2 > 0 . In the rotating frame,
the expression for dsiy (t) is

Osin(t) = spe ™t (29)

Taking the Fourier transform and assuming s, to be real
Isinw] = V2mspd(w + Q) (30)
Putting this back into equation 24

R TG\ /Fain(9Xeay | —wW]0(w — ) — §" Xcav|w]d(w + 2
sisia = Y20 (g_i(w[_w]g)(—l—éﬁ—iizg[w;( — Gh

Going back into the time domain

Sbg(t) = by [Qspe ¥ + b_[Q)spe™ (32)
where o - L)
\//{a,ianav - g
bl = —i(Q —wp) + 2 +ix[Q)] ©53)
and o o
b_[Q] _ \/’fa,ln(_Xcav[_ ]g ) (34)

—i(—Q —wp) + £ +iX[-

The expression for b gives the complex amplitude of the acoustic oscillator. Oscillating at —€2, b_ is
far off resonance, so it will be small.
The optical amplitude is given by equation 20 as

baal] = ~iXeaslt] (9(0bsl] + D] [w]) + \Famdsinlw] ) (35)
Recasting the acoustic mode amplitude in the time domain and neglecting b_ yields
9(0ba(t) + 0b%(1)) + \/FamOsi(t) = (gbo [QAe ™ + (g0 [Q] + /Fam) €M) s, (36)
We express the cavity mode amplitude as

Saa(t) = ar[Qe ™M + a_[Q]eH (37)
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where
a+[Q] = —iXcav[Qgb+[Qsp (38)
and
a-[Q = ~ixcav[~] (9032 + /Rasin) sp (39)

In the measurement scheme employed in the experiment (having a probe beam only at —2) only a_
can be measured. In figure 2 of the main paper, we plot a_ normalized with respect to the background.
This normalized signal a’_ is given by:

a_[0) _ gb1[]
a-[]  \/Ram

The functions a[(2] and v[Q2] are the magnitude and phase of a’_[{2]. The values A and W, described in
the main paper are found as follows

a [Q] =

+1 (40)

A_amﬁﬁf@] @1)

b*

U = arg [ng[“’ﬁ]] (42)
v Fa,in

Where b, [—wg] is the complex amplitude of the acoustic oscillator, when the the probe beam is detuned

by —wg from the control beam.

SI A.2 Full treatment of phase modulation.

In order to use the treatment above to describe the measurements discussed in the main text, we need
to take into account some additional features of the measurement setup.

First, as mentioned in the main text, the probe and the control beams are generated in a phase modu-
lator. Specifically, two microwave tones drive the phase modulator: a stronger one at frequency weontrols
and a weaker one at Wyohe = Weontrol + {2 (in the actual experiment we also send a third, even weaker,
tone that is used for locking the laser to the cavity; its power is at least 3 times lower than the probe tone
and it is at a different frequency, so it has a negligible effect on the measurement result). The strong
and the weak microwave tones generate the control and the probe optical tones respectively, while the
optical carrier acts as a local oscillator in the heterodyne measurement. However, phase modulation
generates sidebands symmetrically about the carrier, resulting in negative-order sidebands on the other
side of the carrier. These are far enough detuned from the cavity that they don’t noticeably affect the
mechanical motion; nevertheless, their beat notes with the carrier are phase-coherent with the beat notes
produced by the control and probe beams, so they will partially cancel the expected heterodyne signal,
thus influencing the measurement result.

Moreover, in some of the measurements the microwave tones are strong enough that we need to take
into account higher-order optical sidebands (e.g., at frequencies 2wecontrol O Weontrol + Wprobe). These
can contribute to the beat note in the photocurrent, and can also be close enough to the cavity resonance
to influence mechanical motion.

Finally, the local oscillator is not infinitely far detuned from the cavity (in our case, it is detuned
by ~ 15k). Hence, it experiences some cavity-induced phase shift in reflection, which also needs to be
taken into account.
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In order to consistently account for all the factors listed above, we start with the description of
the phase modulator. We denote the incident optical tone by age™ ™0, and a set of microwave tones
by ¢y, cos(wpt), where the ¢, are the microwave amplitudes normalized by the (possibly frequency-
dependent) V. of the phase modulator, and the w;,, are the corresponding microwave frequencies. The
output of the modulator is then expressed as

ag = aoe—iwotei > @n cos(wnt) _ aoe—iwot H €i¢n cos(wnt) (43)

n
Next, we use the Jacobi-Anger expansion for the exponents

+oo
ei¢n cos(wnt) _ Z (7i)k!]k(¢n)e—ikwnt, (44)

k=—o0
where J,(z2) is k*® Bessel function of the first kind. With this, the output laser becomes

“+o00

ag = aoefiwot H Z (_Z-)kt]k(qﬁn)efikwnt = o~ iwot Z alefiwlt’ (45)

n k=—0oc0 l

where w; are all possible intermodulation frequencies resulting from the w,,. In practice, to keep the
computation time short we limit our calculations to a finite intermodulation order (as discussed below).
Next, we consider all of these beams (including the carrier) landing on the cavity. To recap equations
12 and 11, the equations of motion can be written as
o = —(Ka/2+iwa)aa —igy aa(bs + b%) — iy/Ramsin (46)
bg = —(78/2 +iws)bg — igy Galaa 47)

In the frame rotating at the carrier frequency wy the incident optical field becomes si, = ), ae” it
and the optical equation of motion can be written as

o = —(Ra/2—iA)aq — igg’ﬁaa(bg + b/’g) —iy/Ka,in Z aje” it (48)
1

with A = wg — w, being the carrier (i.e., local oscillator) detuning.
As usual, next we linearize this equation. To zeroth order in g; B , the field amplitude is

ag = Z al,oe_iw’t (49)
l

ajo = _i\/ /{a,inalXcav[wl]a (50)

where Xcay[w] = (Ka/2 — i(w + A)) L. This amplitude results in a force on the mechanical oscillator
given by

= —igg’BGaE‘)ao = —igg"BGZ Z al,oa};oe_i(“’l_w’“)t 51

Ik
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The first order in gj % terms due to the mechanical motion are (in the adiabatic regime, where 5 <
Ka)

ap = _igg’ﬁ Z al,()e_iwlt (bBXcav [Wl + Wﬁ] + bzXcav [Wl - wﬁ]) (52)
l

Their contribution to the mechanical force is
= —igg’ﬁG(az‘)al + apal)
= (952G DD " aoai.ge @ [bg (X lwr — wa] — Xeavlwr + wp))
Ik

b5 (Xeav[wr + wg] — Xeavlwr — wg])] (53)

We can make a couple of simplifying assumptions. First, we note that bg rotates at +wg, while bz; is
located around —wg. This means that they will be coupled only by the terms rotating at 2wg (i.e., for
lwi — wi] = 2wg). In our case, these terms should be very small, since they would only come from the
higher (at least, fourth) order in sideband amplitudes. Thus, we can neglect the b; term and get

Fy = —iXbg (54)
5= gy DY aneaq ge T (X lwik — ws] — Xeavlwr + wp)) (55)
Ik
Second, we are predominantly interested in the DC terms in X; everything else will result in terms

rotating at frequencies other than wg and, again, will end up far away from the acoustic resonance. As a
result, the acoustic equation of motion becomes

b = —(v8/2+iwg +iD)bs + Fy (56)
2 = i(g5")’G Y larol® (tavlwr — ws) = Xeavlwr + wp)) (57)
l
The solution for this equation is
by = —ilge")?GY D Xpeilwr — wilaroay ge @R (58)
Ik
Xpettlw] = (18/2 +iwp +i¥ —iw) ™! (59)

Finally, knowing this expression for bz we can obtain the intracavity power using the first-order solution
(equation (52)). Some of the terms in a; will end up being phase-coherent with the initial optical drive
(e.g., the motional sideband on the control beam will be phase-coherent with the probe beam, and vice
versa). It is these terms that will define the OMIT response.

For the analysis presented in the main body of the paper, we implement this procedure as follows

e First, knowing the microwave drives and phase modulator response, calculate the tones on the
output of the phase modulator using equation 45 (for practical reasons, we limit expansion to the
third order in the control beam amplitude and to the first order in the probe beam amplitude);

o Next, from equations 49 and 50 determine the zeroth order intracavity field;
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e Use this to calculate the optical force (equation 51) and self-energy (equation 57);
e From these, determine the mechanical response (equations 58 and 59);

e Use this calculated response to get the resulting field inside the cavity a, = ag + a1, where a; is
determined by equation 52

o The reflected field is found using the standard input-output relations aq out = Ga,in — iy/Fa,inGas

o Finally, to relate this field to the measurable quantities, we calculate the electrical response of the
photodiode I o a, o,40a,0ut, Which will consist of all possible beat notes of the reflected optical
tones. The amplitude of the electrical tone oscillating at wp,rohe (Which mainly comes of the beating
of the probe beam with the carrier) is the relevant OMIT signal.

All of these calculation are performed numerically.

SIB Optical and acoustic transmission of the cavity mirrors

SI B.1 General considerations

A cavity made of two lossless mirrors with power transmittances 77 and 75 has finesse [1]

21

F = 60
T+ T3 (60
The corresponding quality factor is
f f_FfeL) _ ArnfL
S = = 61
@ 0% FSR v (T + 1) 6

Here f and -y are the frequency and linewidth of the cavity mode, L is the cavity length and v is the speed
of wave propagation (either optical or acoustic). A conventional way of creating mirrors with very low
loss and low transmission is by using Distributed Bragg Reflectors (DBRs).

SI B.2 The optical transmission through a DBR

This brief review follows the treatment in ref.[2]. Figure 1 shows a schematic representation of a
DBR, where the amplitude of the incident field is () = 1, the amplitudes of reflected and transmitted
fields are E®) and E®) correspondingly and the amplitude of the fields propagating forward and back-
ward in the j*" layer are E](-f) and Ej(b) correspondingly. The index of refraction of the material from
which the wave is incident is n; and the index of refraction of the material into which the wave is trans-
mitted is n;. The index of refraction of the j*" layer is n; and the thickness of the 5 layer is d;. The
z-axis is pointing to the right.

Assume a plane wave approaches the DBR at normal incidence. The continuity of parallel compo-
nents of electric and magnetic fields at each interface results in the following boundary conditions

Ej(x, t) = Ej+1 (l‘,t) (62)
dEj(SL‘, t) dEj+1(SC,t)
= 63
dx dx ©3)
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Figure 1: DBR showing the electric field in each layer. Color indicates different materials.

At the first interface, the boundary conditions give

1+89 = g+ Bl (64)
ni(1-B9) = n (BEP - E) (65)
Applying the boundary conditions to the interface between the j*" and (j + 1) layers yields the equa-
tions
f) ikn.d. b) —ikn.d; f b
Bt 1 gPemtut = B, + B, (66)
n <E§f)ezknjdj _ E](b)efiknjdj> = nj (Ej(izl _ Ey(‘i)1> (67)

Assuming the total number of layers is p, applying boundary conditions to the last interface yields
E;f)e’iknpdp 4 E]()b)efik‘npdp — E(t) (68)
np (Ezgf) etknpdp _ Elgb)e_iknpdp) = nEY (69)

Expressing the equations 64-69 in matrix form

11y 1 o1[EY (70
ni —ni| |[EO| T |ng —ny E£b)
[ ciknd; e—tkn;d; ] E](f) - [ 1 1 ] E](il (71)
njelk”jdﬂ' —njeflk"jdj Ej(b) Nj+1 —Nj+1 EJ(':)-)l
eikﬁp dp e*ikn'p dp EZ()f) _ 1 0] [E® (72)
npezknpdp 7npe—1knpdp EZ(;b) ng 0 0
Upon rearranging and combining equations 70-72 we arrive at
-1 p
1 1 1 1 0] [E®
[Em] - [n —m] Hle [nt o] [ 0 ] 7
]:
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where M is defined as

1 1 eik‘njd]’ e—ik:njd]' -1
M; = [nj —nj] [n.eiknjdj _njeiknjdj} (74)
We define: L b
all alg_ 1 1 - 1 0
A= = M; 75
[am a2 | [nz —ni] ]1_11 / |:nt 0] (75)
and now we have i ©
1 E
from which we find
Topt = EW = ay/ay (77)
Topt =1 — Tgpt (78)

To conclude, finding the transmittivity of the DBR involves calculating the matrix A, which is straight-
forward, provided we know the indexes of refraction n; and n, and the structure of the DBR, which is
fully described by n and d of the alternating DBR layers.

SI B.3 The acoustic transmission through a DBR

Finding the DBR transmittivity for the sound wave is done in a similar manner [3, 4]. Assume
a sound wave with frequency f and wavelength X is incident on a DBR. Equating the displacements
(s(x,t)) and pressures (P(x,t) = —Kds/dx) on both sides of the boundary (K is the bulk modulus)

gives
Sj(d,t) = Sj+1(d,t) (79)
ds; ds;
K2 (dt) = Kjn= =(dt) (80)

The fact that acoustic impedance is related to bulk modulus via Z = K /v = vp , where p is the density
of the material, and that the frequency of the mode must be constant throughout the DBR, results in
three sets of equations that provide information about the amplitude of the acoustic mode at different
interfaces. At the first interface

1450 = {04 4P (81)
Zi1 =) = 7y (s = s{") (82)

At the interface between the j*" and (j + 1) layer:

(£) ikn?<d; (b) —ikn2ed; _ _(f) (b)
sj'e i +sive = st 80 (83)
(f) iknacd, (b) —ikn2<d; (f) (b)
Zj (sj e —se i) = Zjn Sit1~ it (84)
10 NATURE PHYSICS | www.nature.com/naturephysics

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


http://dx.doi.org/10.1038/nphys3900

DOI: 10:1038/NPHYS3900 SUPPLEMENTARY INFORMATION

Here we defined k = 27/ and nje = v /v; , where v; and v; are correspondingly the speed of the sound

wave in the medium on the incident side and the speed of sound in the ;" layer. At the last interface,
assuming a total number of layers p

Sz()f)eikngcdp + Sz()b)efikngcdp — S(t) (85)
Zy (s]()f)eik”gcd” — sl()b)e_ik”zcdp) = Zs® (86)

From equations 81-86, using the same methods as in section SI B.2 , a matrix B is obtained:
b b 1o1] 10
_|b11 012 _ ac
J:

where M fc is defined as:

iknacd; —iknacd;
Mee— |1 Lppen s e (88)
J Z] _Z‘7 Ze’L ’T'LJ 3 Zje 1 ’FLJ j
Now we have:

1 B S(t) 89
s — 0 (89

from which we get:
rac = 8 = byy /by (90)
T =1-12, o1

In conclusion, to calculate both optical and acoustic reflection/transmission of a DBR the following
quantities need to be known:

e d -thickness of each layer

® ngpt - optical index of refraction for each layer
e p - density for each layer

e v - sound velocity in each layer

Additionally, it is necessary to know the values of those parameters for the material from which the
wave is incident and the material into which the wave is transmitted. For the experiments described in
the main paper these are liquid “He and SiO, respectively.

SI B.4 Optical and acoustic quality factors for the present DBRs

The DBRs in these experiments are deposited on to the faces of SiO; fibers. The DBR is comprised
of alternating layers of SiOy and TayOs whose thicknesses are chosen to correspond to one-quarter
wavelength of the light (which in vacuum has wavelength ~ 1550 nm). The cavity is formed between
two such fibers immersed in superfluid helium; therefore we are interested in the transmission of light
and sound from the superfluid helium, through the DBR, and into the fiber.
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Material | nopt v(m/s) p (kg/m?)

‘He 1.0282[5] | 238]5] 145(5]

Si0, 1.4746[6] | 5,900 + 100[7, 8] | 2,200[7]
Tay05 2.0483[6] | 4,500 % 500[7] 7,600 + 600[7]

Supplementary Table 1: Material properties of superfluid “He, SiO5 and TasOs

Table 1 shows the relevant parameters for each material.

For the 1550 nm light, a quarter optical wavelength layer of SiO9 is 263 nm and a quarter optical
wavelength layer of TagOj5 is 189 nm. The 1550 nm light has wavelength equal to 1508 nm in liquid *He
and therefore couples to the acoustic mode with 754 nm wavelength in liquid *He, whose frequency is
315.7 MHz. For this mode, a quarter acoustic wavelength in SiOs is 4.7 £ 0.1 pm and a quarter acoustic
wavelength in TapOs is 3.6£0.4 m; the large discrepancy between the optical and acoustic wavelengths
in the solid materials means that the DBRs used in the present device will not provide strong reflectivity
for the acoustic waves.

The experiment was performed with the mirror surfaces separated by 84 pum. The cavity consisted of
a low reflectivity (15 layer pairs) input DBR and high reflectivity (18 layer pairs) back DBR. The laser
wavelength was 1538 nm; the frequency of the acoustic mode of interest was wg = 27 x 317.3 MHz.

As mentioned above, the DBRs in the present devices are not designed to be highly reflective for the
acoustic waves; nevertheless, the strong contrast in acoustic impedance between “He and the outermost
layer of the optical DBR provides fairly large reflectivity. From equation 91 the acoustic transmittivity
for the low reflectivity DBR is calculated to be 10,100 + 400 ppm, while the acoustic transmittivity
for the high reflectivity DBR is calculated to be 7,700 £ 1,300 ppm. The uncertainties predominantly
come from the material properties of TagOs (see Table 1). These values of the acoustic transmission lead
to the acoustic quality factor (g ex; =79,000 £ 5,000 which is slightly higher than the experimentally
determined quality factor (g ext =70,000 £ 2,000. This difference might be attributed to various factors,
such as losses due to mirror misalignment or imprecise knowledge of the DBR structure.

SIB.5 Improving the acoustic quality factor in future devices

In this section we consider the possibility of improving the acoustic quality factor by adding an
acoustic DBR between the substrate and the optical DBR. The proposed structure in shown in figure 2.

We consider a cavity in which optical confinement is again provided by optical DBRs with 15 and 18
pairs, optimized for maximum reflectivity at 1550 nm, and the acoustic confinement is enhanced by addi-
tional layers forming an acoustic DBR. Technical aspects of the coating process impose the requirement
that the total stack thickness be less than 25 pm, and that the thickness of each layer of a given material
is an integer multiple of the thickness of the thinnest layer of this material[6]. Maximizing ) cx for the
315.7 MHz acoustic mode (to which 1550 nm light couples), subject to the above constraints, we find
the optimal design for the stack. Table 2 shows stack parameters for the current designs as well as the
proposed designs.

We use equations 78 and 91 to calculate the optical and acoustic transmission for the DBRs presented
in table 2. The results are shown in table 3. The optical transmission doesn’t change appreciably as more
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Figure 2: Example of a DBR structure that would be reflective for both optical and acoustic waves

Number Design

1 (Current) Substrate x (189 nm TayO5x253 nm Si02) x 189 nm TasO5
2 (Current) Substrate x (189 nm TazO5x253 nm Si02)® x 189 nm Tas05

3 (Future ) Substrate x 3591 nm TasO5 x4554 nm SiO9 %3591 nm TaoOx5 x 759 nm SiOg X
(189 nm Taz05 %253 nm Si05)'® x 189 nm Taz 05

4 (Future ) Substrate x 3780 nm TasO5 x4554 nm SiO9 %3213 nm TayO5 X
(253 nm SiO5 x 189 nm TayO5)'8

Supplementary Table 2: The stack designs used in the current device and the future stack designs

acoustic layers are added, as the acoustic layers are outside of the optical mode. At the same time, the
acoustic layers decrease the acoustic transmission by more than an order of magnitude. Assuming the

USiO2 UTa205

Number | Topt (ppm) | Tac (ppm) diotal (M) | Fre (PPM) | e (PPM) | Q3 l10ss

1 73.5 10,000 4 400 | 6.6 6.540.5 171421 4.2 x 107
2 10.2 8,100 4 1200 | 8.3 6.440.9 16.8+ 1.5 4.3 x 107
3 73.5 350 + 200 19.68 38+1 9.542 7.5 x 107
4 10.2 420 =+ 240 19.87 31+1 78+1.4 9.2 x 107

Supplementary Table 3: The calculated parameters for different stacks. The optical transmittivity
(Topt), acoustic transmittivity (7},.) and thickness (diota1) are discussed in section SI B.5. The ratios of
the energy stored in SiOs (U502 /UH®) and Tay05 (U295 /UHe) to the energy stored in Helium are
discussed in SI B.6

mirror separation is 84 pm (as in the present devices), we calculate the expected acoustic quality factor
to be Qgext = 3.3 £2.2 X 108, where the uncertainly is primarily due to the acoustic parameters of
TayOs. This calculation assumes a cavity constructed from Device #3 and Device #4 in Tables 2 and 3.
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SIB.6 Acoustic loss inside the DBR layers

In addition to being limited by the transmission of the acoustic mode into the fiber, the acoustic Q
factor can also be limited by dissipation in the DBR. To estimate the Q factor associated with this loss,
the following expression is used

1 US%¢g0, + UT2%¢py,0,
Qﬁ,loss UHe

Here U is the energy stored in the material; ¢ is the acoustic loss angle for the material.
To find the stored energy, we use the treatment above to find the displacement field in each layer. The
stored energy can then be expressed as

92)

d;
f) iknac b) —iknac
U]stored x A W%ij; )ezknJ T + S§- )6 zknj m‘de (93)

f 1 f)* —92ikn3cd.;
= wih; [<|S§)|2 + |5§‘b)|2> dj — Im (S() P (e~ 2iknids _ 1))]

knac J J
J

The calculated ratios of energy stored in SiO and TapOs are shown in table 3. Both ¢gio, and ¢1a,0;
have been measured over a range of temperatures and for frequencies mostly much lower than 300 MHz
[9, 10, 11, 12, 13, 14, 15, 16]. All of these measurements show ¢gi0,; PTa,05 < 1073, The values of the
quality factor due to absorption in the DBR (@3 10ss), assuming ¢sio, = @Tay05 = 1073, are shown in
Table 3. For all designs ()3 10ss is much larger than () g oxt. As a result, the acoustic quality factor should
not be limited by the acoustic absorption in the DBR.

SI C Acoustic loss in the superfluid helium.

SI C.1 Intrinsic temperature dependent loss

For T' < 600 mK the main intrinsic loss mechanism for density waves (i.e., first sound) in superfluid
helium is the three phonon process [17]. It can be described by an amplitude attenuation coefficient argp,

72 (u+ 1)%k%

a3pp(wﬁ) = m

w5T4 <arctan(w57') — arctan <gfyp2w57'>> (94)
Here wg is the wave frequency, 1" is the temperature, py. = 145 kg/m? and vy, = 238 m/s are the
helium density and sound velocity, © = 2.84 is the Griineisen constant [18], 7 = £T~° is the thermal
phonon lifetime, where £ = 1.11 x 1077 s-K® [19] and p = 3kpT /v, is the average thermal phonon
momentum. Finally, + is the coefficient for the cubic term in the phonon dispersion, which is expressed
asy = — 6vize 2%5, where € and p are phonon energy and momentum respectively. It has been measured
tobe v = —8 x 107 kg7?m—2s2 [18].
The intrinsic quality factor of an acoustic mode can be calculated from the attenuation length as

wp

Qp,int = (95)

2UHeo@pp
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For the relevant acoustic mode frequency wg = 27 x 313.86 MHz and temperature 7' < 0.5 K both
arctan arguments in equation 94 are >> 1, leading to the simple relationship

(96)

X
Qﬁjnt = ﬁa

where y ~ 118 K*.

SI C.2 Heat transport model and thermal response time.

In order to make use of the equations 94 and 95 to analyze the data in the main paper, it is necessary
to know the temperature of the helium inside the cavity. To accomplish this, we have developed a model
of heat transport in the device. The steady state solution of this model yields the dependence of the device
temperature on the dissipated power and the temperature of the mixing chamber, and is used to derive
equation 2 in the main text. The dynamical solution provides an expression for the thermal relaxation
time of the helium inside the cavity.

Heat transport equation

First, let us define the geometry of the device. As shown in figure 1a of the main text, a cylindrical
volume of helium occupies the space between the faces of two optical fibers which are confined within
the bore of a glass ferrule. The helium inside the cavity is thermally linked to a larger volume of helium
outside the ferrule via two identical sheaths; since these sheaths have the same length, we can represent
them as a single sheath with doubled cross-sectional area. Finally, we assume that the helium outside
the ferrule has large heat capacitance and a good thermal link to the mixing chamber, so its tempera-
ture doesn’t depend on the power dissipated inside the cavity and is the same as the mixing chamber
temperature.

We represent the helium inside the cavity as a point heat capacitance C(7T') located at x = [ and
experiencing a heat load ® (dissipated laser power). This capacitance is connected to a reservoir at
x = 0 through a one-dimensional channel (the combined sheaths), which has a heat capacitance per unit
length Cy(T") and a thermal resistance per unit length R;(7"). The reservoir is maintained at a constant
temperature Tyrc. If we denote the temperature dependent specific heat (per unit volume) of helium by
cy (T') and its thermal conductivity in the channel by x(7T'), we get for the parameters above

Co(T) = Veayey (T) 97)
Ci(T) = Agnev (T) (98)
R(T) = (Aqr(T)) 7Y, (99)

where V¢, is the volume of the cylindrical cavity and Agy is the combined cross-sectional area of the
sheaths.
The two equations governing the heat transport in the channel are

1 0T
= — - 100
I TR(T) 0 (100)
oT aj
Ci(T)— = —=—= 101
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The first equation relates the heat current j(x) and the temperature gradient 3% (positive values of j
denote the heat flowing in the positive = direction, i.e., from the reservoir into the cavity), and the second
one describes the heating of the helium inside the channel. The boundary condition at the reservoir is
simply T'(x = 0) = Tc, while for the cavity it is expressed through a heat flow balance

oT
b= (Co=—1J
( ot
This last relation shows that the power ® dissipated in the cavity is partially spent on increasing its
temperature and partially transmitted into the channel.
Because the thermal conductivity « and heat capacity c are temperature-dependent, the equations
above are in principle non-linear. Nevertheless, since they have the same dependence c¢(T") = &y1°,

k(T) = ey T3, we can transform the equations into linear ones with an appropriate substitution. For that,
we express the material parameters as

(102)

=l

C(T) = Aqe(T) = §,T° (103)
Co(T) = Veave(T) = 6oT° (104)
Ry(T) = (Aaws(T)) ! = (aT%) 7, (105)

where §; = Agndv, 0o = Veavdy and ¢, = Agney. Substituting these expressions into the equation and
boundary conditions, we obtain

) oT e 0(TH)
_ .39t _ 4
jlx)=—¢T 5 1 om (106)
dj 0T 6 0(T)
T = = 107
oe o T a4 (107
or | S O(TY)
— (5135 — - (=2 — 108
(o5 =0)| L= (375 )L, (o
Denoting v = T and using the first equation to express j leads to
ou ¢ 0%u
U, = uo (110)
ou ¢ Ou 4®
e T B = 111
<8t * 5089;) T (11

Thus, the heat transport equation is expressed as a one-dimensional diffusion equation with the diffusion
coefficient D = ¢;/6;.
Steady state solution

First, we consider a steady state solution with a constant heat load ®. The diffusion equation turns
into % = 0, which has a general solution u = a + bx. The boundary condition at x = 0 immediately
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Ju __ 4®

yields a = ug = Tﬁl/[c- From the second boundary condition we find b = 52 o which results in

u(x) = up + 46(11):[:, (112)
From this, the temperature of the cavity can be determined as
Ti =u(l) = Tye + 455 (113)
This relation is used to derive equation 2 in the main text.

Transient dynamics

Next, we consider the dynamics of this system. We consider the system in the steady state derived
above and then abruptly turn off the power source at ¢ = 0. The cavity temperature should then decay to
Ty exponentially with some characteristic time 7y, which we want to determine.

To find the time evolution we use the eigenfunctions expansion of the solution:

u(x,t) = uo + Y Tn(t)va(z), (114)
n
where v, (x) is an eigenfunction of the Laplace operator with the appropriate boundary conditions
0%v
T = (115)
vp(0) =0 (116)
€ 0%v, € Ouy,
— — =0 117
<5l 92 5 ax> . (1)
If we denote A, = k2 (choosing the opposite sign A\ = —k2 results in the inability to satisfy both

boundary conditions simultaneously, as well as an exponentially diverging time evolution), we get from
the first two equations that v,, () = sin(k,xz). The boundary condition at x = [ restricts the values of &,

— L k2 sin(knl) + <Lk, cos(knl) = 0, (118)
oy do

which can be rewritten as

(knl) tan(kpl) = ry (119)

with ry = % = U — “//ﬂ is the ratio of the sheath and the cavity volumes. The solutions for this

VCG.U cav
equation exhaust all of the values k,,.
Now we can substitute the expansion back into equation 109 to obtain the equations for the time-

dependent parts 7};:

ou €] 82u
- -tz 120
ot 5 Ox? (120)
8Tn €] 821}n €1 )
dotngt = EZTnW = —glzknTnUn (121)
n n n
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As the eigenfunctions are orthogonal, equation 121 has to be satisfied for each 7}, independently

GTn 6[]62 Tn
o _ @y __In 122
ot 0 Tn (122)

where 7, = 61‘22 is the characteristic decay time. The solution for this equation is

T (t) = T,,(0)e ™, (123)

We’re mostly interested in the longest relaxation time 7y corresponding to the smallest value of k,,, which
we denote as kg

o 1
_ 124
T0 e kg ( )
With several percent error, ky can be approximated by
9\ 2
(kol) ™2 ~ (> + 7y, (125)
T

so the relaxation time becomes

€ 4 ST31 (4 c? [ 4 C, 4
To & 5—212 <772 + TV) = ellT3/l <772 + rv) = <7r2 + rv> = KS:; <7r2 + Tv> , (126)
where Cy, = cAg,l = §T31 is the total heat capacitance of the sheath, and Ky, = kAq,/l = ¢T3/l is
the total thermal conductance of the sheath.

The expression above for the thermal relaxation time 7y depends only the sheath’s heat capacitance,
thermal conductance, and the geometric parameter ry,. The heat capacitance of the sheath can be known
fairly well, since it only depends on its volume and the specific heat of the liquid helium, which for low
temperatures is well known [20]. Thermal conductivity, however, is much harder to evaluate a priori,
since it depends upon the particular geometry of the conducting channel (which determines the mean
phonon travel length between collisions with the boundaries) and the scattering properties of its wall.
Therefore, measurements of 79 can provide an estimate for the thermal conductivity without the need for
any assumptions about the specularity of reflections from sheath surface.

Measurement of the thermal relaxation time

We measure 79 by changing the circulating optical power (which is proportional to the power dis-
sipated inside the cavity) and monitoring the response of the temperature-dependent linewidth of the
acoustic mode. The experiment is performed using the OMIT/OMIA technique described in the main
text, but with the probe beam frequency wy, e being fixed exactly one acoustic frequency away from
the control beam: wyrohe = Weontrol +wg. This way, the magnitude of the OMIA part of the probe beam
reflection is inversely proportional to the linewidth of the acoustic mode, which is a monotonic function
of the device temperature. Hence, by observing the OMIA response as a function of time we can access
the temperature dynamics. In practice, rather than measuring a step response to a change in the dissipated
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Figure 3: Amplitude and phase of the intrinsic linewidth response as a function of the modulation

frequency of the circulating optical power. The blue line is the fit to a double exponential (127); for com-

parison, the green line shows the fit to a simple exponential decay with a time delay, which corresponds

to setting 71 = 0 in the equation 127.

optical power, we perform a lock-in measurement where we sinusoidally modulate the optical drive and
record the complex response of the magnitude of the OMIA signal.

The results are shown in figure 3. The data was fit to a double exponential decay with two time scales
7s and 77 and an additional time delay 74

1 1

WWTq 127
T iwr 1+ iwry (127)

5int[w]

We attribute the longer of the two decay times 75 ~ 350 us to the thermal response. The shorter time
7 ~ 40 ps is only required to account for the data at frequencies above 2 kHz; it might arise from some
other faster thermal process in the system (e.g., heating of the dielectric stack, or thermal equilibration of
the helium inside the cavity), or from the time-delayed mechanical response itself. Finally, the time delay
T4 ~ 30 ps can be attributed to the sound propagation delay, as it is comparable to the ballistic phonon
travel time in the sheath [ /vpe &~ 12 ps. In interpreting the slowest time 7 as the thermal response time
7o we assumed that the thermal response is the slowest time scale in the system. Indeed, the slower time
75 we observe is much larger than either optical (k! < 3 ns) or mechanical (’yﬁ_1 < 20 ps) lifetime, and
we are not aware of any other similarly slow process occurring inside the device.

Finally, we use the measured value of 7 to estimate the thermal conductance. First, we need to
calculate the heat capacity, for which we can use the known value for the specific heat ¢, /T3 = 8.3 x
1072 J/(mol - K*) [20], which leads to the heat capacity per unit volume cy /73 = 3x 103 J/(K* - m?).
Next, we evaluate the volumes. The cavity has a diameter of d.,, = 133 & 5 pum and the length of
leav = TOpm, so its volume is Viuy = %dgavlcav = (1.0 £ 0.1) x 107'2 m3. The sheaths have the
same outer diameter d.q, (Which is set by the inner diameter of the ferrule), the inner diameter dg,=125
pum and the length of [ = 3 mm; this means that the combined volume of two sheaths Vi, = Agl =
2% (d2,, — d3,)l = (3.5 +16) x 107'? m3. The large spread in the volume estimates is due to the
uncertainty in the sheath thickness hgp, = (dsp, — deav)/2 = (1.5 + 6.5) pm. From the volume estimates
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we obtain ryy = 0.06 + 0.27 and Cyp, /T2 = (1.0 + 4.8) x 1078 J/K*. Using the experimental value for
the time constant 7o = 3.5 x 1074 s we get K, /7> = € = (2.5 + 7.8) x 107°> W/K*.

We can assess the validity of this result using the theoretical expression for the thermal conductivity
of a cylindrical channel[21]:

2—-f
ch77
which is applicable when the phonon mean free path is limited by the scattering at the channel bound-

aries. Here dg, is the diameter of the channel, and f is the fraction of diffusive phonon scattering events
at the channel walls. This equation can be rewritten as

W(T) = %c(T)vHed (128)

2—f 3 k()
f N 'UHedch C(T)

(129)

We can apply this formula to the sheath by using equation 126 to express the ratio ¢/x. With that, we

find
2 f 3 2[4
_ N 130

f UHedch 70 <7T2 +TV> ( )

If we approximate d., by twice the sheath thickness (to account for the much longer longitudinal scat-
tering events) de, = 2hg, = deay — dgn, = (3 + 13) um, we will find that the diffusive scattering fraction
f is between 3% for the minimal sheath thickness of 1.5 pm and 20% for the maximal sheath thickness
of 6.5 um. These values appear reasonable for the optically smooth glass surfaces of the ferrule and the

fiber and typical wavelength of thermal phonons Ay, = 27 ?Eﬁ% 2 10 nm for T' < 0.4 K.

SID Cooperativity

In this section, we describe how the optomechanical cooperativity C' and the single-photon coopera-
tivity Cp are influenced by the cavity geometry and thermal conductance. Optomechanical cooperativity
1s defined in [22] as:

4™ _ 4(g5")*Ra
RaYpB RaYpB

C:

=n,Coh (131)

It is an important figure of merit in optomechanics, quantifying the efficiency of the system in
exchanging photons and phonons [22]. Large cooperativity is necessary, e.g. for squeezing of light
(C > nin(1+ (2wm /k)?)) [23], efficient state transfer between optical and mechanical modes (C' > n,)
[24], and cooling the mechanical oscillator (n = W) , where n is the lowest achievable
phonon number [22]. While C' is of interest, it is partially determined by the maximum number of pho-
tons that can be stored within the cavity. Since this number is typically limited by thermal constraints or
optical nonlinearities, it is also useful to quantify device performance by defining the power-independent
quantity Cy (single photon cooperativity) .

20 NATURE PHYSICS | www.nature.com/naturephysics

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


http://dx.doi.org/10.1038/nphys3900

DOI: 10:1038/NPHYS3900 SUPPLEMENTARY INFORMATION

SID.1 Single photon cooperativity

Here we describe how the single photon cooperativity Cy depends on the cavity geometry. As shown
in equation 131, it depends on gg B, Ko and 7g, all of which, in the case of helium confined in a Fabry-
Perot cavity and neglecting any contributions to g from the helium’s internal loss, are approximately
inversely proportional to cavity length. Therefore we do not expect single photon cooperativity to have
a strong dependence on cavity length.

In this situation, for a cavity of length L, the optical linewidth ., and mechanical linewidth -4 are
given by [25]:

e(l— r%oPt)réOPt))

Ko = (132)
LT‘%Opt) Té‘)pt)
and ) (ac)
- UHe(l o Tlac rzac )
8= I (ac) (ac) (133)

The expression for the optomechanical coupling g B s given in the main text. It depends on the

mode shape and size, which in turn depend on L, R;, and R» (the radii of curvature of the two mirrors).
As described in the main text, we use the paraxial approximation to obtain the profiles of both the acoustic
and optical modes [25], and then find g; 8 by numerical integration of Eq.1 in the main text. We find
that gy ' is maximized for Ri1, Ry ~ 0.54L. Intuitively this can be understood as follows. A cavity
with R, Ry = 0.5L (i.e. a spherical configuration) is unstable with a vanishing waist and diverging spot
size at the mirrors. As R; and Rs increase, the waist increases, while the mode diameter at the mirror
surface decreases very rapidly. If R; and Ry increase too much (i.e so as to approach a plane-plane
configuration), the mode’s transverse dimensions again diverge. The value R;, Ry ~ 0.54L represents
the optimal choice between these extremes.

In the specific device described here, the values of the electric field reflectivities of the mirrors for
1550 nm light provided by the manufacturer are Tgc)pt) = 0.99995 and Tg)pt) = 0.999994 [26], consistent

with the calculations in section SI B and with the maximum measured finesse. The values rgac) =0.995
and réac) = 0.996 are the mirrors’ amplitude reflectivities for the 315.7 MHz acoustic wave as calculated
in section SI B, and confirmed by the measurements of the acoustic quality factor.

We first use equations 131, 132, 133 as well as the expression for g; # to calculate Cy for cavities
of various L and for R;, Ry = 0.54L assuming the mirrors are much larger than mode’s transverse size
(this assumption will be relaxed in what follows). For L > 5 um, Cy ~ 1.09 x 1073 and varies by less
than 0.1%, so is practically independent of cavity length, confirming the qualitative reasoning above.
The value Cy is plotted in figure 4 for varying cavity lengths.

The cavity used in this experiment does not have Ry = Rs = 0.54L, but rather has Ry = 408
pm, Re = 292 pym and L = 85.2 um. These values were chosen as a compromise between satisfying
the ideal relationship (i; = Re = 0.54L), minimizing the potential impact of mirror misalignment,
operating in the resolved sideband regime, maintaining a transverse mode smaller than the mirrors, and
accomodating the range of R that can be achieved using the laser machining technique. Cj for such
a cavity, calculated as before, and again neglecting the effect of the mirrors’ finite size, is shown as a
function of L in figure 5 using red squares.
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Figure 4: Single photon cooperativity for different cavity lengths L, assuming mirrors with Ry, Ry =
0.54L
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Figure S: Single photon cooperativity for different cavity lengths for the mirrors used in the experiment.

However due to the fabrication process, the mirrors are not ideally shaped, but instead have a Gaus-
sian profile with FWHM (Full Width at Half Maximum): d; = 36 um, do = 41 pm. Only inside this
FWHM does the mirror efficiently confine the cavity mode; this leads to clipping losses for longer cavi-
ties [1], diminishing the optical finesse. When the contributions of these clipping losses are included in
Kq (using the treatment in [1]), the resulting Cy is shown with blue circles in figure 5.

The single photon cooperativity extracted from the experiment via direct measurement of x, g and
the estimate of gg"ﬁ described in the main text is Cy = 1.5 x 10~* and is marked with a black star in
figure 5. The difference from the expected value of cooperativity (blue circles) is primarily due to the
fact that optical finesse achieved in the device (F = 2.56 x 10%) differs from the optical finesse at this
L extracted from the values of r§°pt), rg)pt), dy and dy (F = 4.47 x 10%), which could be a result of
imperfect alignment, mirror surface contamination or deviations of the mirror shape.
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SID.2 Heating limit for the optomechanical cooperativity.

As discussed in section SI C.1, heating of the helium inside the cavity causes an increase in the damp-
ing of the mechanical mode. This sets a practical limit on the incident optical power and, consequently,
on the maximum multiphoton optomechanical cooperativity.

For a given heat load @ in steady state the temperature of the cavity is given by equation 113:

40

)
€

(134)

cav

4P
Toow = Thic + —1 = Tyc +
€l
where e = ¢ /1 = I;SS’L is the coefficient for the temperature-dependent thermal conductance. This results
in an internal damping rate (see equations 94-96)

49
S (Tﬁc + ) (135)
X

Vpint = +®
Frin Qe x €

The total damping is the of this intrinsic damping and the acoustic radiation set by the acoustic transmis-
sion at the helium-glass interface:

dwpg

Y8 = 7B,int + YB,rad = ?Q) + TTMC + YB,rad (136)
Thus, 4 has three main components:
(1) The intrinsic loss due to the optical heating
4w
Vo= 2P (137)
XE€

As noted in the main text, we can relate the heat load @ to the incident power P, and the circulating
photon number 7n,:

® = uPc + Vhwoa"ia,intﬁoa (138)
This allows us to express the mechanical damping as
VB,® = Ainc Pinc + Qcircla (139)

with the coefficients aine = 4pwg/(xe) and acire = (4vhwakaintws)/(xe). Using the experi-
mentally determined values of /e and v/e (provided in the main text) we find these to be ai,. =
27 - (1.3+£0.2) - 108 Hz/W and aciye = 27 - (2.1 £0.2) Hz.

Both of these coefficients are inversely proportional to the thermal conductance coefficient €, mean-
ing that improving the device thermalization enhances its power handling. In the present device the
cavity is thermalized through a relatively long and narrow sheath of helium, as described in the
main text, it should be possible to achieve a significant increase in thermal conductance by a small
change the device construction. We can estimate this increase by using a standard result from
kinetic theory, which is a generalization of equation 128:

1
K= §CUH€)\’ (140)
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where ) is the phonon mean free path. The corresponding thermal conductance for a 1D channel
of cross-sectional area A and length [ is

K- ﬁ _ lev HeAA

l 3 1

For estimate we can assume a geometry where the cavity is formed between the two fiber faces as
in the current device, but is not confined inside the alignment ferrule (e.g., each fiber is held in a
separate ferrule with ~ 500 pum gap between the ferrule faces, as in [27]). For ~ 60 pm long cavity
and ~ 125 pm fiber diameter we can approximate all relevant dimensions (including the mean free
path) as 100 ym: [ ~ A ~ 100 um, A ~ (100 pm)2. This results in the heat conductance
K/T3 = 21073 W/K*, which is to be compared to the sheath conductance Kg,/T° = (2.5 +
7.8) x 1075 W/K*. Thus, it seems feasible to increase the heat conductance by a factor of 30.
Assuming that the fraction of the optical losses dissipating into heat stays the same, we find that for
such a device aine ~ 27 -4 - 107 Hz/W and aciye = 27 - 7- 1072 Hz.

(141)

(i) The second loss source is the intrinsic damping due to the finite mixing chamber temperature

4w
YBMC = %Tﬁc (142)

In the experiment the lowest achieved mixing chamber temperature is about 10 mK, and it consis-
tently stayed below 50 mK unless a heater was used. This puts the associated damping below 20
Hz (corresponding to the quality factor > 1.5-107), which can be neglected compared to the effects
of the cavity thermalization discussed in the previous paragraph.

(iii) The last is the radiative loss associated with sound transmission through the helium/glass interface.
This is described in detail in chapter SI B. Here we just note that this damping is independent of
temperature, and that in the current device it limits the quality factor to 79,000 &= 5,000 (v,raa =
27 - (4.0 &£ 0.3) kHz); implementing an acoustic DBR (described in section SI B.5) can raise the
quality factor to (3.3 £ 2.2) - 10 (y4 yaa = 27 - 100 Hz).

Expressions 131, 136 and 139 can be used to calculate the dependence of the multiphoton coopera-
tivity on the incident optical power. In determining the circulating photon number we assume that 10%
of the incident power is in the control beam detuned by wg away from the cavity resonance, while the
rest is in the optical local oscillator (OLO) detuned by about 1 GHz.

The results are shown in the left panel of figure 6. All of the lines demonstrate the same trend: for
low powers the mechanical damping is dominated by the radiative losses and is independent of the in-
cident power, so the cooperativity grows linearly with P;,.; for high powers the mechanical linewidth is
proportional to the incident power, and the cooperativity levels out. The theoretical calculations for the
present device are denoted by a solid red line, with the black star denoting the maximal cooperativity
obtained during Brownian motion measurements. The dashed red line corresponds to an increased radia-
tive quality factor Q.q = 3.3 - 10° (achieved by adding acoustic DBR, as discussed in section SI B.5),
which improves the cooperativity at low power, but doesn’t affect the saturation value. The solid blue
line is the same as solid red, but it assumes a 30X increase in the thermal conductivity; this improves
the high power behavior and maximal achievable cooperativity, but leaves the low power dependence
the same. The dashed blue line includes both of these improvements, leading to a ~30-fold increase
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Figure 6: Dependence of the multiphoton cooperativity C (left) and thermal multiphoton cooperativity
C'/nyy, (right) on incident laser power. Line style denotes radiative mechanical losses v ;aq: solid lines
correspond to Qg raq = 70,000 (as for the current device), while dashed lines represent a device with
QBrad = 3.3 - 10%. The line color denotes the intrinsic temperature dependent mechanical damping
vp,o: red lines describe the current device, while the blue and the green lines suppose a factor of 30
improvement in thermal conductance. All the lines except for the green assume that 10% of the incident
power is in the control beam detuned by 320 MHz from the cavity resonance; for the green line 100% of
the incident power is in the control beam. In addition, the green line assumes that the optical linewidth
is decreased from 69 MHz to 30 MHz (while keeping cavity length the same) and that the relative input
coupling Kq in/Kq is increased from 0.25 to 0.5. The black star denotes the maximum C' ~ 0.041 and
C'/nyn ~ 0.0025 measured in the device. In those measurements the incident power was 46 W, mixing
chamber temperature was 60 mK, total circulating photon number was ~ 2000 of which ~ 1000 photons
were coming from the control beam. The control beam had ~ 9 % of the total incident power.

of cooperativity for all powers. Finally, the dashed green lines assumes additionally a decrease in the
optical linewidth from 69 MHz to 30 MHz, an increase of the relative input coupling from 0.25 to 0.5,
and the absence of the OLO, so that all of the incident power is concentrated in the control beam (which
decreases the contribution to the thermal load associated with the OLO).

The right part of figure 6 shows another figure of merit, the thermal cooperativity, which is defined
as a ratio of the multiphoton cooperativity to the equilibrium thermal phonon occupation. This quan-
tity is important for quantifying the efficiency of quantum protocols, as it represents the ratio of the
measurement strength to the thermal decoherence rate of the mechanical oscillator. In determining the
phonon occupation, the equilibrium temperature of the mechanical oscillator is assumed to be equal to
the helium temperature inside the cavity Tt calculated using expression 113, which is consistent with
the data from figure 4(c) in the main paper. For the optimized device (dashed green line) the thermal
cooperativity exceeds unity for a wide range of powers, and can become as large as 5.
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