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We have studied the power dependence of superfluid Helmholtz resonators in thin (750 and 1800
nm) rectangular channels. In the A-phase, we observe a non-linear response for velocities larger than
a critical value. The small size of the channels stabilizes a static uniform texture, which eliminates
dissipative processes produced by changes in the texture. For such a static texture, the lowest
velocity dissipative process is due to the pumping of surface bound states into the bulk liquid. We
show that the temperature dependence of the critical velocity observed in our devices is consistent
with this surface state dissipation. Characterization of the force-velocity curves of our devices may
provide a platform for studying the physics of exotic surface bound states in superfluid 3He.

One of the defining features of superfluidity is the abil-
ity to flow without dissipation for velocities below a criti-
cal value [1]. The Landau criterion states that this veloc-
ity threshold is set by a local minimum in the dispersion
relation of the lowest energy excitation of the system [1].
For fermionic superfluids, the relevant energy scale is the
superfluid gap, ∆p, which is the energy required to excite
a quasiparticle from the Fermi surface, and the Landau
critical velocity is therefore vL = ∆p/pF [2].
Implicit in the arguments of Landau is the assumption

that the gap is both spatially invariant and constant for
all momentum states. In superfluid 3He the latter as-
sumption holds only for the bulk B-phase, which has an
isotropic gap. Near a surface however, the gap becomes
suppressed and develops separate parallel and perpen-
dicular components [2]. The suppression of the gap near
the wall also breaks the former assumption and allows
for bound states with energies less than the bulk gap.
Experiments studying oscillating macroscopic objects in
3He-B have shown that there is a sub-Landau critical ve-
locity threshold at which bound states are emitted from
a moving surface, leading to an observable change in dis-
sipation [3, 4]. Characterization of the coupling of these
mechanical oscillators to fluid flow has proven to be a
valuable tool for studying surface-bound states in 3He-
B [3–8]. These surface bound states are of interest not
only from the perspective of understanding 3He hydro-
dynamics [9] and quantum turbulence [10, 11], but also
as a condensed matter realization of exotic quasiparticles
such as Weyl or Majorana fermions [12–21].

The use of flow experiments to study bound states in
the A-phase is limited due to the complexity that arises
from the anisotropy of the A-phase gap. There exists

an anisotropy axis ℓ̂, which points in the direction of
a Cooper pair’s orbital angular momentum, along which
the superfluid gap closes at two point nodes (see Fig. 1c).
Since the A-phase exhibits long-range spatial ordering in

the orbital angular momentum of Cooper pairs, ℓ̂(r⃗) is
a vector field, or texture, which may vary smoothly in
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space over distances larger than the coherence length.
The orientation of this texture couples both to superfluid
phase gradients (i.e., flow), and to spin degrees of free-
dom [2]. In the absence of other orientational effects, the

tendency of the ℓ̂-texture is to align with the superfluid
flow velocity v⃗s [22].
Naively this may seem to undermine the possibility of

dissipationless flow in the A-phase since excitations can
be produced for arbitrarily small velocities at the gap
nodes, however for constant flow with a static texture
this is not the case. A-phase superfluid flow can be sta-

ble even when aligned with ℓ̂ because only a small number
of states exist near the nodes. These states quickly fill
when the fluid begins to flow, but once filled do not con-
tribute to dissipation [23]. This produces a non-linear
relationship between the superfluid velocity and momen-
tum density,

j⃗s = ρs(vs)v⃗s, (1)

because the superfluid density, ρs, decreases with increas-
ing velocity as excitations are produced. The momentum

FIG. 1. A-phase flow. (a) Simplified phase diagram showing
the range of temperatures where the A-phase exists for 750
and 1800 nm channels. Note that the A-phase is stabilized
to lower temperatures and pressures by the tight confinement
[42]. (b) Drawing of the confined Helmholtz resonator volume.
(c) Momentum space plot of the Fermi surface (red) and the

gap ∆p = ∆A

√
1− (p̂ · ℓ̂)2 which goes to zero at the poles

aligned with the anisotropy vector ℓ̂.
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density, js(vs), has a local maximum known as the maxi-
mum pair breaking current [2]. This relationship assumes
the system is always near equilibrium such that the avail-
able states are all filled. There is, therefore, no special
velocity at which dissipation onsets for this static texture,
constant flow, case.

In cases where the texture is dynamic, the motion of ℓ̂
changes the gap, and therefore dissipates energy by creat-
ing new excitations as it moves [24]. Further complexity
is added by the geometry of the superfluid container since

the boundary conditions require the ℓ̂-texture to be per-
pendicular to surfaces. This means that 3He-A flowing

over a surface can produce a textural gradient where ℓ̂
is parallel to the flow far from the wall, and perpendic-
ular at the surface [22]. The characteristic length-scale
over which the texture rotates 90 degrees is the healing
length, ξAheal ∼ 8 µm [2]. For bulk systems, where all
dimensions are large compared to the healing length, the
texture can become a hydrodynamic variable that ex-
hibits complicated behavior [25–30]. Systems, where one
or more dimensions are small compared to the textural
healing length tend to lock a particular texture in place.
This can be seen in the literature by comparing a num-
ber of experiments with varying degrees of confinement
[31–39].

A notable investigation of A-phase dissipation was car-
ried out by Bagley et al. using a torsional pendulum,
housing helium channels 49 µm in height [32]. When a
relaxation time associated with the orbital texture was
longer than the oscillation period the texture was essen-
tially static, but when the two timescales were compara-
ble a viscosity associated with the dynamic texture per-
sisted at arbitrarily low velocities due to the motion of
the texture. Parpia and Reppy studied oscillatory flow
through an 18 µm diameter orifice, which showed con-
stant dissipation until a single critical velocity (1.5 - 2.5
mm/s) [33].

Experiments with a higher degree of confinement have
been achieved by using fine filters with average pore sizes
of 8 µm [35], and 0.8 µm [39, 40]. In the case of Manni-
nen et al. an additional dissipation regime was observed
depending on if the temperature was above or below the
bulk TAB line. An interpretation of this result was offered
based on a calculation for a cylindrical channel connect-
ing two A-phase bulk reservoirs, where a phase gradient

may be unwound by rotating the ℓ̂-texture at the ends of
the channel [41].

In order to study the role that surface states play in
A-phase dissipation, it is therefore desirable to create a
parallel plate geometry with confinement much smaller
than the healing length [42–46], ensuring a uniform tex-
ture. To this end, we have used our nanofluidic devices
called Helmholtz resonators that have been described in
previous publications [42, 47–49]. The devices are com-
prised of bonded quartz chips that have been etched to
create a small volume sandwiched between the chips. The
shape of this space is a circular basin (3.5 mm radius),
with two 1.60×1.38 mm rectangular channels connecting

it to the external helium bath (see Fig. 1b). The thick-
ness of the enclosed space is constant throughout. The
two devices used in this experiment had thicknesses of
D = 750 ± 12 and 1800 ± 12 nm.
Aluminum electrodes are patterned onto the quartz

creating a parallel plate capacitor inside the basin. The
volume of the basin can be slightly decreased by an elec-
trostatic force between the capacitor plates. When this
plate motion is driven resonantly with the Helmholtz
mode of the channels, fourth sound is driven. The normal
fluid does not move in the channels because the viscous
penetration depth, δ, is large compared to the confine-
ment (δ ≈ 1 mm ≫ D) [50]. Furthermore, the con-
finement is also small compared to the healing length
(D ≪ ξAheal ≈ 8µm ) [2]. We therefore expect the texture
to be uniformly aligned in the highly confined direction,
ẑ. The fluid very close to the side walls may be an ex-
ception, but this represents a small fraction of the total
volume and therefore is expected to have a negligible im-
pact on the average mass current.
The capacitance of the Helmholtz resonator fluctuates

in time when driven. We make use of a balanced General
Radio 1615-a capacitance bridge that outputs a current
proportional to the derivative of the time-varying capaci-
tance. This current is fed into an SR570 trans-impedance
amplifier that converts the current into a voltage signal,
then is demodulated by a Zurich HF2LI lock-in amplifier.
The measured capacitance signal responds to changes in
the basin fluid mass when the fourth sound resonance is
driven. A model of this system, described in the sup-
plementary material [51], relates the spatially averaged
mass current, ⟨js⟩, to the measured detector voltage via
the equation

⟨js⟩ =
(1 + 2Σ)

2C0Rtrans

(
ρAD

a

)
VDET

VDC
. (2)

Here, C0 is the undriven capacitance, Rtrans is the cur-
rent to voltage conversion factor of the transimpedance
amplifier, ρ is the total mass density of the 3He, VDC is
a bias voltage used to enhance the signal, A is the area
of the basin, a is the cross-sectional area of the channel,
and Σ is a small correction factor to account for the finite
compressibility of the helium.
By performing repeated power sweep measurements of

the Helmholtz resonance, we are able to measure the
drive dependence of the resonance amplitude [47]. As
shown in Fig. 2, for low drives there is a linear regime,
where the peak amplitude is proportional to the drive
voltage, suggesting that the superfluid density is inde-
pendent of drive. Once the peak of the resonances crosses
a critical value, Vc, there is a secondary regime where the
amplitude increases at a slower rate and the line shape
begins to flatten at the top of the resonance. The am-
plitude saturates for large drive voltages, suggesting that
there is a maximum momentum density that we cannot
drive the resonator beyond.
We characterize this effect by recording the detector

voltage at which the slope changes for both devices at
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FIG. 2. Characterizing the non-linear regime. (a) The max-
imum detector voltage max(VDET) for the 750 nm device at
22.45 bar and 2.08 mK is plotted as a function of the drive
voltage VAC. The bias voltage VDC is held constant through-
out the experiment. On the opposite axes, the detector volt-
age has been converted into a mass current ⟨js⟩a ∝ VDET/VDC

and the drive has been converted into a pressure gradient
|∇P | ∝ VDCVAC. The inset highlights the linear drive regime
and a critical value at which the slope abruptly changes. (b)
Log plot of the Helmholtz resonance with drive voltages rang-
ing from 0.1 to 100 mV. (c) The same resonances as in Fig
2b are shown but are normalized by a quantity proportional
to the driving force. Near resonance the line shape distorts
above the critical drive.

pressures of 22.45 and 27.94 bar, over a range of tem-
peratures. This voltage threshold was then converted
into a critical current using equation 2. These results
are compiled in Fig. 3. The temperature was determined
using the known temperature dependence of the super-
fluid density [2], referenced to a primary melting curve
thermometer [52]. The temperature of each data point
was computed using the resonant frequency of the fourth
sound mode of the 1800 nm device. The fourth sound
mode frequency changes according to the equation(

ω0(T )

ω0(0)

)2

=
ρs
ρ
, (3)

where ω0(0) is a function of the resonator dimensions,
total fluid density, and the isothermal compressibility.
Inversion of this curve allows the measured frequency to
be converted into a temperature as described in the Sup-
plementary Material [48, 51].

The temperature scaling was investigated by fitting
750 nm and 1800 nm amplitude data sets to a function
of the form

⟨jc⟩ = j0(1−BT/T 1800
c )n/2. (4)

The prefactor B is included to account for the sup-
pression of the critical temperature due to confinement.
For the 1800 nm device B = 1, and for the 750 nm
device it is the ratio of the two critical temperatures
B = T 1800

c /T 750
c = 1.042. The value of this ratio is in-

ferred by measuring the mode frequency as a function of
temperature and extrapolating to zero frequency.

FIG. 3. Temperature scaling. (a) Plot of the peak voltage
as a function of temperature for both devices at 22.45 and
27.94 bar. The dashed lines show fits to functions of the
form (1−BT/T 1800

c )n/2. The parameter B is used to rescale
the critical temperature for the 750 nm device. The 22.45 bar
and 27.94 bar data sets are fit together for the 1800 nm device
but separately for the 750 nm device. (b) Measured frequency
dependence of the Helmholtz modes. (c) Superfluid density
of each device as calculated from the resonant frequency. The
grey curve is the bulk superfluid fraction.

For the 1800 nm device, both pressure data sets are
well fit by n = 3.20. For the 750 nm device, a similar
curve, n = 3.13, can be fit to the data, but it deviates
from this trend at lower temperatures. The fact that
the A-phase persists to lower temperatures under higher
confinement allows us to measure a wider range of tem-
peratures in the 750 nm device. The deviation from a
3/2 power law appears to be a consequence of the fact
that the superfluid fraction is approximately linear near
Tc, but not at lower temperatures.
In light of the end effects observed by Manninen et

al. [39, 40], it is also worth considering phase transitions
of the bulk fluid outside the Helmholtz resonator. At
22.45 bar the bulk A to B transition occurs at TAB =
0.979Tc and for 27.94 bar it is TAB = 0.876Tc. This
means for the accessible range of temperatures the fluid
outside the Helmholtz resonator was always B-phase.
The critical currents are converted into critical veloci-

ties, by taking the ratio vc = ⟨jc⟩/ρs(vc). Here ρs(vc) is
the velocity-dependent superfluid density computed from
the measured Helmholtz frequency at the critical value.
We find the critical velocity curves for the two devices
come close to falling onto one another (see Fig. 4) and
are not inconsistent with a function of the form

vc = v0(1−BT/T 1800
c )1/2, (5)

which is similar to the temperature scaling of the conven-
tional gaped Landau critical velocity. The temperature-
independent prefactor of the fit is v0 = 2.67±0.09 mm/s.
The magnitude of the measured velocity is sufficiently
small that textural explanations for the dissipation can
be safely ruled out. Following Kopu and Thunburg [53]
we take the velocity at which a textural transition should
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FIG. 4. Critical velocity. The critical current of the
Helmholtz resonator is computed from the resonance ampli-
tude at which the linear regime ends, and the superfluid den-
sity from the center frequency of the resonance. The ratio of
these values is the critical velocity.

take place to be
√
3/4πℏ/2mD, which is 38.20 mm/s and

15.91 mm/s for the 750 nm and 1800 nm channels re-
spectively; significantly higher than the observed range
of velocities.

Comparing our results to the DC flow experiments per-
formed by Manninen et al. [39, 40], multiple dissipation
regimes were observed only in cases where the end effects
produced orbital viscosity. In experiments where the A-
phase texture was static, there was no special velocity at
which dissipation onsets, as expected for DC flow. This
suggests that the dissipation onset velocity we observe is
related to the dynamics of oscillatory flow resulting from
our AC Helmholtz resonance.

To explain why oscillatory flow should generate dissi-
pation above a critical velocity, we consider mechanical
oscillator experiments performed in 3He-B [3, 4]. Near
the surface of a moving object, the gap is suppressed al-
lowing for bound state excitations localized near the sur-
face. Similar to the states near the A-phase nodes, these
states do not contribute to dissipation once filled. When
the mechanical oscillator velocity exceeds vL/(1+α) and
the oscillation period is large compared to the quasipar-
ticle lifetime, surface excitations can escape into the bulk
liquid [55]. Here α is a geometry-dependent constant re-
lated to backflow around a generic object, which is α = 2
for a vibrating cylinder [55]. This allows for dissipation
as the surface states are continuously populated and re-
leased.

The A-phase should also exhibit gap suppression
within a few coherence lengths of the walls for diffuse
scattering conditions [56], which we believe to be appli-
cable to our devices due to surface roughness [42]. For
the diffusive case, there does not seem to be any rea-
son why the same velocity reversal process for scattering
surface excitations into the bulk should not also occur
in the A-phase. The primary difference is that the gap
suppression near the anisotropy axis means that there
are additional low-energy bulk states that can be pop-
ulated. As with the DC flow case, we expect these to

quickly become populated up to a level set by the max-
imum velocity. The threshold where dissipation onsets
should correspond to the velocity at which the highest
energy-bound state exceeds the lowest unfilled bulk en-
ergy state.

At finite temperatures, it is also necessary to consider
thermal excitations. In the experiments of Castelijns et
al. [3], and Bradley et al. [4], the temperatures were well
within the ballistic regime (T < Tc/8 and T ≈ 140− 190
µK respectively) and the model used in their analysis
assumes T = 0. Since the A-phase is stable at higher
temperatures, our experiment is always in the hydrody-
namic regime where thermal excitation can be expected
to play an important role. Although existing models have
focused on the T = 0 limit for simplicity, the fact that
the critical velocity is proportional to the Landau velocity
appears to be quite generic, since the argument depends
only on the relative energy of the surface states compared
to the bulk, not the processes by which the surface states
are scattered. As pointed out by Castelijns et al. [3], it
is possible at finite temperatures that quasiparticles play
an intermediate role in allowing the bound states to es-
cape into the bulk. The fact that the critical velocity
we measure is proportional to vL ∝ ∆A ∝

√
1− T/Tc is

therefore consistent with the dissipation due to surface
states. A complete theoretical analysis of the A-phase in
this temperature regime is desirable to predict the mag-
nitude of the critical velocity.

In conclusion, we have carried out measurements of
the force-velocity curves for oscillatory flow in 3He-A in
channels with thicknesses of 1800 and 750 nm. We find a
dissipation onset at a critical velocity that has the same
temperature scaling as the Landau critical velocity. This
critical velocity is best explained by the pumping of sur-
face bound states in our devices, an effect that has not
previously been shown in 3He-A. Our experiment stud-
ies channel sizes that are still large compared to the gap
suppressed region where bound states are localized. In
this regime, our measurement of the critical velocity does
not show any notable dependence on the channel height
or pressure. When the channel size becomes comparable
to the coherence length, the gap suppression will extend
across the entire channel [57] resulting in a reduced crit-
ical velocity. New generations of Helmholtz resonators
have been developed to confine helium in channels as
small as D = 25 nm [58]. Theoretical work suggests that
the A-phase is favored over the planar phase even in this
highly confined limit when strong coupling is considered
[43, 45]. Using the pressure and temperature dependence
of the coherence length, ξ(P, T ), gives us an in situ knob
to change the ratio D/ξ. Studying the Helmholtz mode
force-velocity curves as a function of this ratio is thus
a platform for probing the properties of bound states in
both 3He-A and 3He-B, which are predicted to be exotic
Weyl [14, 17, 18, 21] and Majorana quasiparticles [59, 60].
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