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Abstract
Excitations in superfluid helium represent attractivemechanical degrees of freedom for cavity
optomechanics schemes.Here we numerically and analytically investigate the properties of
optomechanical resonators formed by thinfilms of superfluid 4He coveringmicrometer-scale
whispering gallerymode cavities.We predict that through proper optimization of the interaction
betweenfilm and opticalfield, large optomechanical coupling rates p> ´g 2 100 kHz0 and single
photon cooperativities >C 100 are achievable. Our analyticalmodel reveals the unconventional
behaviour of these thinfilms, such as thicker and heavier films exhibiting smaller effectivemass and
larger zero pointmotion. The optomechanical systemoutlined here provides access to unusual
regimes such as > Wg M0 and opens the prospect of laser cooling a liquid into its quantum ground
state.

1. Introduction

Thefield of cavity optomechanics [1] focuses on the interaction between confined light and amechanical degree
of freedom.Optomechanical techniques enable an exquisite degree of control over themotion of
micromechanical resonators, with successful examples including ground-state cooling [2] and squeezing of the
mechanicalmotion of a resonator [3]. Recently, in a push to extend the realmof applications to biological
systems, there has been a growing interest in the study of resonators immersed or interacting with liquids [4–6],
or the use of liquids as resonators [7]. In parallel, a special type of quantum liquid, namely superfluid helium, has
also garnered significant attention for optomechanical applications, but for a different reason: themotivation
here being the ultra-low optical andmechanical dissipation it can provide due to its reduced optical scattering
[8] and absence of viscosity [9, 10]; with both properties being particularly desirable for quantumoperations.

To date, themajority of superfluid optomechanics schemes have relied on bulk helium, with
implementations taking for example the formof a gram-scale resonator coupled to a superconducting
microwave resonator [9], a capacitively detected superfluidHelmholtz resonator [11] or a helium-filledfiber
cavity [12].

In contrast, our group recently demonstrated an approach to superfluid optomechanics based on
femtogram thin films of superfluid 4He condensed on the surface of amicrotoroidal whispering gallery
resonator [13, 14]. Leveraging the techniques of cavity optomechanics, we demonstrated real-time observation
of the superfluid Brownianmotion, laser cooling of the superfluid excitations [13], as well as the possibility to
apply large optical forces at themicroscale arising from the atomic recoil of superfluid heliumflow [14].
However these devices, while exhibiting strong photothermal coupling, suffered from reduced radiation
pressure coupling due to a poor overlap between the optical field and the superfluidmechanical excitations
(known as third sound [15], see section 3).

In this work, we theoretically design a superfluid thinfilm resonator from the ground up, carefully
optimizing the interaction between superfluid film and optical field (section 2), in order tomaximize the
dispersive radiation-pressure optomechanical coupling.We investigate three different resonator geometries
(microdisk, annularmicrodisk andmicrosphere), and provide useful analytical expressions for the effective
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mass and zero-pointmotion of superfluid films (section 3), as well as the scaling of optomechanical figures of
merit with experimental parameters such as resonator dimensions and superfluidfilm thickness (section 4).
Based upon this analysis, we predict large optomechanical coupling rates p> ´g 2 100 kHz0 and single
photon cooperativitiesC0 greater than 10 are achievable with experimentally accessible designs, as well as
unconventional regimes such as g0 greater than themechanical resonance frequency WM .

Superfluid thinfilms present a number of desirable properties: they are naturally self-assembling on the
surface of any resonator due to a combination of ultra-low viscosity and attractive van derWaals forces [10], they
can be of extremelyminute volume, with third sound detected infilms only twomonolayers thick [16] and they
offer a large degree of tunability as their thickness and the frequency of the excitations they sustain can be swept
in situ over a large range simply by changing the heliumpressure in the sample chamber. In addition, third
sound can exhibit strongDuffing nonlinearities, be strongly coupled to quantized vortices [17–20] and interact
with electrons floating on thefilm [21]. All together, these properties underline the potential of superfluid thin
films as a promising platform for cavity optomechanics.

2.Opticalfield optimization

Figure 1 shows a schematic illustration of the optomechanical coupling scheme investigated in this paper. A
circular whispering gallerymode (WGM) resonator [22] is uniformly coatedwith a thinfilm of superfluid
helium [13]. Acoustic waves in this thinfilm known as third sound [15, 23, 24]manifest as thickness variations
which dispersively couple to the confinedWGMvia perturbations to its evanescent field. As shown in
figure 1(b), the fluctuating thickness of the superfluid in the vicinity of theWGM induced by a third soundwave
modulates the amount of higher refractive indexmaterial in theWGM’s near field, thereby changing the optical
path length of the resonator. The frequency shift wD experienced by aWGMof resonance frequency w0 due to
the presence of the superfluid thinfilm is given by a perturbation theory approach [25]:
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where E

is the unperturbedWGMelectric field calculated in the absence of superfluid, e ( )rr


is the relative

permittivity and e = 1.058sf is the relative permittivity of superfluid helium [26]. The numerator integral is
taken over the volume of thefilmwhile the denominator integral is taken over all space; equation (1) therefore
essentially relates the electromagnetic (EM) energy ‘sensing’ the perturbing element (thefilm) to the total EM
energy in themode. Figure 2(a) plots a FEM simulation of ∣ ∣E 2


for a transverse electric (TE) [27]WGMof

wavelength l m= 1.5 m confined in a typical silica disk of radius m=R 40 m and 2 μmthickness [28].
Overlayed in black is a plot of the vertical dependence of ∣ ∣E 2


along the dashed black line going through the

center of theWGM.Thefield ismostly confinedwithin the silica resonator, and has low intensity on the top and
bottom interface where it is in contact with the superfluid film (red dashes), resulting inweak detection
sensitivity/optomechanical coupling through equation (1). This limitation can be overcome by a proper choice
of disk thickness andWGMpolarization so as tomaximize the electric field at the interface, as discussed in the
following. Figure 2(b) shows the same verticalmode profile for a transversemagnetic (TM) polarizedWGM in a
400 nm thick silica disk of identical radius, and for a TEWGMconfined in a 200 nm thick disk. Reducing the
thickness of the disk pushes the field out of the resonator, increasing ∣ ∣E 2


over the superfluid region, such that

anyfluctuation in the film thickness results in amuch larger frequency shift of theWGM. Figure 2(c)provides a
more systematic investigation of thismechanism.We employ the effective indexmethod (EIM) [27] to calculate

Figure 1. (a)Artistic rendering of a disk-shaped optical resonator sustaining an opticalWGMresonance (red and blue) covered in a
superfluid helium thinfilm. (b)Radial cross-section showing a finite elementmethod (FEM) simulation of theWGMfield intensity.
The oscillating superfluidwave on the top surface of the resonator (solid and dashedwhite lines) dispersively couples to theWGMvia
equation (1). (c)The case of an annularmicrodisk (top) and amicrosphere resonator (bottom) are discussed separately in appendices
A andB.
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themode profile for a TE andTMguidedwave inside a slabwaveguide of varying thickness (normalized such
that ò e =

-¥

¥
E zd 1r

2 ), recording for each thickness the value ofE2 at the interface. For each polarization there is
an optimal thickness whichmaximizes E2 at the interface: too thick and the field ismostly confinedwithin the
resonator, too thin and the field becomes very delocalized along z and its value at the interface drops again. From
this analysis, we obtain the optimal silica disk thickness for TM (TE)WGMs as approximately 400 nm (200 nm).
Next, we repeat the same analysis for different values of the refractive index of the slab, while tracking the optimal
thickness for TE andTMWGMs. These results are summarized infigure 2(d) and show for instance that for a
high refractive indexmaterial such as silicon or gallium arsenide, a disk thickness of∼200 nm is optimal for TM
polarizedWGMs. Since these results are based on the EIM, they start to lose accuracy for strongly confining
geometries (R on the order of a fewλ); nevertheless they provide a useful starting point for designing optimized
structures. The TMpolarizedWGMs,with dominant field componentEznormal to the upper and lower
interfaces, provide a step increase in the field outside the disk (due to the continuity of e Ezr ), as shown in
figure 2(b), and are thereforemore sensitive to the superfluid [29].

Since the evanescent field decays along zwith characteristic length on the order of hundreds of nanometers
(figure 2(b)), the change in ∣ ∣E 2


over the typicalD =z 1 to 30 nm thickness of thefilm can safely be neglected.

Equation (1) can therefore be rearranged to give the optomechanical optical resonance frequency shift per unit
displacement w= D DG z0 [1, 30, 31]:
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where the numerator integral is now a surface integral over the resonator top interface1.We employ the one-

dimensional version of equation (2) òe e= - -w( )( ) ( ) ( ) ( )G E z E z z1 0 d
2 sf

2
r

20 to provide pG 2 as a function

of resonator thickness in the right axis offigure 2(c). (This 1Dmodel is valid in the same regime as the EIM). As
for double-disk optomechanical resonators [32],G is independent of resonator radius and does also not depend
on superfluid thickness. Proper choice of resonator thickness is important, resulting for instance in a 20-fold
improvement inG for TMmodeswhen going from a 2 μmto a 0.4 μmthick silica disk. Through this

Figure 2. (a) FEMsimulation showing the radial cross-section of a TEWGMofwavelength 1.5 μmconfined in a silica disk of 40 μm
radius and 2 μmthickness. Overlayed in black is a plot of the ∣ ∣ ( )E z2


mode profile along the dashed black line going through the

center of theWGM.The red region indicates the superfluidfilm on top and bottom. (b)Verticalmode profiles ∣ ∣ ( )E z2


for a 1.5 μm
wavelength TM (resp. TE)WGMconfined in a 400 nm (200 nm) thick, 40 μmradius disk. The dashed red linesmark the disk upper
and lower boundaries. Inset: FEM radial cross-section of ∣ ∣E 2


for eachWGM. (c)Value ofE2 at the interface calculated using the EIM,

for TM (blue) andTE (orange) polarizedmodes. Right axis: optical frequency shift per nmof superfluid pG 2 . (d) Indicative optimal
disk thickness formaximalfield at the interface and superfluid detection, as a function of diskmaterial refractive index.

1
For simplicity wewill in the following consider excitations on the top surface of the resonator, although the treatment follows the same

approach for the bottom surface, but with different boundary conditions for the third soundwave due to the presence of the pedestal.
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optimization, it is possible to reach large values ofG upwards of 6 GHz nm–1, despite the challenge posed by
superfluid helium’s optical properties being very close to those of vacuum (e = 1.058r , n=1.029) [26]. This is
achieved in part thanks to the perfect spatial overlap provided by the self-assembling nature of the superfluid
film: these predicted coupling rates are for instance nearly three orders ofmagnitude larger than those obtained
in experiments inwhich a silicon nitride stringwas approached in amicrotoroid’s near field [25]. Note
additionaly that unlike the previouslymentioned scheme inwhich a perturbing element of constant volume is
approached in the near field of a resonator [25, 33–35], this detection approach does not rely on an electric field
gradient along the z direction, as we are instead detecting a perturbing element of changing volume.

It is interesting to examinewhether large coupling rates can also be achieved for superfluidmodes confined
to the vertical sidewall of theWGM. For a circularWGMcavity, the sensitivity to a change in radius is given by

wG
Rradial

0 [36]. From equation (2), but integrated along the vertical, rather than top boundary, it can be shown
thatfluctuations in the thickness of the superfluid film on the vertical boundary would translate to

p pw e
e

-
-( )G 2 2

Rvertical
1

1
0 sf

SiO2

 ; 0.25 GHz nm–1 with the above parameters.

Here we have discussed the sensitivity to thicknessfluctuations affecting either the top, bottomor vertical
boundaries of the resonator. Naturally, a variation in themean thickness of the filmwould produce a frequency
shift of + >G G2 10 GHzvertical nm–1. Thismeans a change infilm thickness of 10 pm (i.e. 1

36
th of a helium

monolayer [37])would be sufficient to shift aWGMresonancewith = ´Q 2 106 by one linewidth, thereby
providing an ultra-precise independentmeans to optically characterize the superfluidfilm thickness, a
significant improvement over capacitive detection schemes commonly used in the superfluid
community [24, 38].

3. Superfluid third soundmodes

Third soundwaves [13, 15, 16, 23, 24, 39] are a type of excitation unique to superfluid thin filmswhichmanifest
as thickness fluctuationswith a restoring force provided by the van derWaals interaction; they are somewhat
analogous towaterwaves (where the restoring force is gravity) [40], see figure 3(a). Third sound propagates at a
speed c3 given by [10]:

r
r
a

= ( )c
d

3 , 33
s vdw

3

with r rs the ratio of superfluid to totalfluid density [10], avdw the van derWaals coefficient characterizing the
strength of the attractive force between the helium atoms and the substrate, and d the superfluidfilmmean
thickness. The van derWaals coefficients for various resonatormaterials are provided in table 1. The d1 3

dependency in c3 neglects the retardation effects in the van derWaals potential and is a reasonable first order
approximation forfilms 0–30 nm thick [37, 41]whichwewill consider here. The disk geometry, in addition to
providing optical confinement to theWGMs, also confines third sound excitations localized on the top surface,
giving rise to third sound resonances. The shape of these resonantmodes is dictated by the confining geometry
and, for circular resonators, these take the formof Besselmodes as shown infigure 3(a) [18, 24, 39]. The third
soundmode profile hm n, describes the out-of-plane deformation of the superfluid surface for the (m; n)mode as
a function of time t and polar coordinates r and θ:

h q z q= W( ) ( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠r t A J

r

R
m t, , cos sin , 4m n m n m m n M, , ,

wherem and n are respectively the azimuthal and radialmode numbers,A themode amplitude, Jm the Bessel
function of thefirst kind of orderm, zW = ( )c RM m n, 3 themode frequency and zm n, a frequency parameter
depending on themode order and the boundary conditions, see table 2. In the followingwe only focus on the
rotationally invariantmodes (m=0), as these are the oneswith largest optomechanical coupling [36].

3.1. Boundary conditions
Themode profiles for thefirst three rotationally invariant third soundmodeswith fixed (h =( )R 0) and free
( h¶ =( )R 0r ) boundary conditions [43] are shown infigure 3(b). The free boundary condition is also known as
the ‘noflow’ boundary condition, as it requires the radial velocity of the superfluid flow to be 0 at r=R [43], and
is therefore volume conserving. On the contrary, thefixed boundary condition does not conserve volume
(particularly visible for the (m=0; n=1)mode), and therefore requires significantflow across the confining
boundary, in the incompressible limit. In circular 3He third sound resonators a crossover from free tofixed
boundary conditions has been observed for films thicker than∼200 nm [43, 44]. For our resonator design, with
thinfilms and near atomically sharp ‘knife-edge like’ [45]microfabricated boundaries, we expectminimal third
sound drivenflow to occur between the disk’s upper and lower surfaces. This implies free boundary conditions
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for the third soundwave, consistent with those observed in circular 4He third sound resonatorsmost similar to
our design [18, 39].

3.2. Third soundmode effectivemass
Calculating the optomechanical single photon coupling strength g0 and single photon cooperativityC0—useful
figures ofmerit of the optomechanical system [1] (see equation (5))—requires the third soundmode effective
mass meff

k
= =

W
=

G
( )

g G x G
m

C
g

2

4
. 5

M M
0 zpf

eff
0

0
2

Figure 3. Superfluid third sound. (a) Left: schematic illustration of a superfluid third soundwavewith profile h ( )r

on a film ofmean

thickness d (dashed orange line). The normalfluid component [46] is viscously clamped to the surface, while the superfluid
component rs oscillatesmostly parallel to the substrate (blue arrows). Right: plot of the surface profile for the (m=0; n=3)Bessel
modewith free boundary conditions. (b)Radial profile h ( )r along the dashed red line in (a) for the (m=0; n=1) –blue–, (m=0;
n=2) –green– and (m=0; n=3) –red–Besselmodes withfixed (left) and free (right) boundary conditions. (c)Comparison
between the trajectory described by a ‘particle’ in a fluid (left) and a solidmembrane (right).

Table 1.VanderWaals coefficients for a few
resonatormaterials.

Material avdw Source

Silica ´ -2.6 10 24 m5 s−2 [16, 42]
CaF2 ´ -2.2 10 24 m5 s−2 [42]
Silicon ´ -3.5 10 24 m5 s−2 [42]
MgO ´ -2.8 10 24 m5 s−2 [37]

Table 2. First eight values of the frequency parameter z n0, forfixed and free boundary conditions. In the case offixed (free) boundary
conditions, these correspond to the zeroes of J0 ( ¢J0).

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

Free 3.832 7.016 10.174 13.324 16.471 19.616 22.760 25.904 29.047 32.19

Fixed 2.405 5.520 8.654 11.792 14.931 18.071 21.212 24.353 27.49 30.63
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In continuummechanics, the effectivemass at reduction point A

is obtained by reducing the system to a

pointmass meff movingwith velocity ( )v A

possessing the same kinetic energyEk as the original system, that is

=m E

veff
2 k

A
2 , or:

ò r
=

( ) ( )

( )
( )m

v r r

v A

d
. 6V

eff

2 3

2

 


For rotationally invariantmodes of a thin solid circular resonator of thickness d, this leads to thewell known
expression for the effectivemass of a point on the resonator boundary [47]:
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Going from equations (6) to (7) assumes the velocity ( )v r

(and density) do not depend on the z coordinate,

which is valid for both in- and out-of-planemechanicalmodes.Here, in order to circumvent the question of the
distribution of superfluid velocity [15] and density [16] below thefilm surface, we use the equipartition theorem
to replace the kinetic energy term in equation (6)with the van derWaals potential energy stored in the
deformation of the film surface. In analogy to gravity waves [40], this energy is given by:
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where ( )U z is the energy per unitmass of the film due to the van derWaals potential [10]:
a

= -( ) ( )U z
z

. 9vdw
3

In the limit of small amplitude surface oscillation h d , we obtain:
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Therefore equation (8) becomes for rotationally invariantmodes:
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Asmentioned previously, free (‘noflow’) boundary conditions are volume conserving (ò h =( )r r rd 0
R

0
),

therefore we obtain for the effectivemass of a point on the film surface at r=R:
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Herewe recognize the effectivemass of the solid case (equation (7)), multiplied by a prefactor proportional to
( )R d 2. Thismeans thatwhile for a solid such as a circularmembrane meff scales as expected as R d2 (like the real
mass), for a third soundwave on a superfluid film meff scales as R d4 —with thicker and heavierfilms therefore
making for lighter resonators possessing larger zero pointmotion. This radically different scaling can be
understood by considering themicroscopicmotion of a ‘particle’ of the resonator in both cases, as illustrated in
figure 3(c). Indeed, while the surface deformation in each case is governed by the samemathematical equation
(equation (4)), a particle in the solid describes an essentially verticalmotionwhile that in afluid an extremely
flattened near horizontal trajectory. As the useful displacement for optomechanical coupling is in the z direction,
the horizontal particle excursion (µR) and horizontal kinetic energy are ‘wasted’ and appear as a penalty term in
the effectivemass.

TheR4 dependence of meff underscores the dramatic gains achieved by going towards smaller
microfabricated third sound resonators. Indeed, going froma centimeter-scale third sound resonator [18] to a
40micron radius resonator such as outlined here and demonstrated in [13] affords—with otherwise identical
parameters—a 5×108 reduction in effectivemass and identical boost in cooperativity (equation (5)).
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Note interestingly that we recover exactly the same R d4 effectivemass scaling if we consider a gravitational
wave in a normal liquid (by substituting the gravitational potential g z in equation (9)), and consider the shallow
water limit (l d )where the speed of sound =c g d only depends on liquid height [40].

4.Optomechanical coupling

In this sectionwe evaluate the performance of superfluid thin films as optomechanical resonators and
successively address how this performance is influenced by resonator dimensions, film thickness and
mechanicalmode order.

4.1. Influence of resonator radius
Figure 4(a) plots the dependence of third sound frequency pW 2M and pg 20 on resonator radius for the
fundamental (m=0; n=1) third soundmode on a 30 nm thick superfluid film. The solid orange line
corresponds to the value of g0 given by equation (5), employing the previously determined value of meff

(equation (13)) and assuming a constant p =G 2 6.6 GHz nm–1 (see section 2). This is a good assumption for
disk radii above m~20 m, as themicron sized radial extension of theWGM is small compared toR, and the
superfluid displacement is therefore essentially constant over the opticalmode (see inset). For smaller radii (and
higher ordermechanicalmodes—see section 4.3) themode overlap between the optical field and the third sound
displacementfield needs to be taken into account when calculating g0:
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ò
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d
. 14
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all
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Here = h
h
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q xr

R zpf is the superfluid displacement profile normalized to xzpf atR. The orange dots correspond to

the results of individual FEM simulations using equation (14)withTMWGMson a 380 nm thick silica disk. The
analytical expression is in good agreementwith the FEM simulation down to m~R 20 m (<10 % error), below

Figure 4.Optomechanical parameters.(a) Single photon optomechanical coupling strength pg 20 andmechanical frequency pW 2M

for the fundamental (m=0; n=1) third soundmode as a function of resonator radius, for a d=30 nm thick superfluidfilm. Solid
line: analytical formula, points: individual FEM simulations. Inset: FEM simulation displaying theWGMoverlayedwith the third
soundmode displacement profile (colored line). (b) pW 2M (blue) and pg 20 (orange) as a function offilm thickness for a

m=R 20 m disk. (c)Predicted single photon optomechanical cooperativityC0 as a function offilm thickness d, for a m=R 20 m
disk. (d) Influence of third sound radialmode order n on pg 20 , for m=R 20 m and d=30 nm. Inset:mechanical surface
deformation profiles and FEMsimulation showing theWGMmode overlayedwith the displacement profile of the (m=0; n=14)
third soundmode. All results are for free boundary conditions.
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which it overestimates g0. Since themechanical frequency scales as -R 1 and the zero pointmotion as -R 3 2, g0
increases faster than WM asR is reduced, and for mR 20 m the system enters the uncommon optomechanical
regime of > Wg M0 . Table 3 summarizes the relevant scaling parameters for a disk resonator based on
equations (3)–(5) and (13).

4.2. Influence of superfluidfilm thickness
Figure 4(b) plots the dependence of pW 2M and pg 20 on superfluid film thickness, for a m=R 20 m

resonator. Since WM scales as -d 3 2 and g0 as d5 4 (see table 3), both parameters start with extremely dissimilar
values for thin films and evolve towards one another as d increases. In this particular case,

pW ´g 2 13.5 kHzM0   for d=34 nm.We take into account theWGM ∣ ∣E 2


field decay as the film gets
thicker, but this is only aminor correction for the thin filmswe consider here. Next we plot infigure 4(c) the
dependence of the single photon cooperativityC0 (equation (5)) on d. For this estimationwe consider an optical
loss rate k p =2 20 MHz corresponding to an opticalQ of 107 as demonstrated in thin silica disks of identical
radius2 [35], and a conservative estimate for themechanical = W GQM M M of 4000, as demonstrated in our
previousworkwithmicrotoroid resonators [13]. (Note that third sound dissipation rates several orders of
magnitude below these values have already been demonstrated [39]).The predicted cooperativity displays a
strong dependence onfilm thickness, reaching large values above unity, with =C 60 for d=30 nm. This value
—on parwith the state-of-the-art in optomechanical systems [2, 48]—would represent a significant increase in
performance compared to existing superfluid optomechanics systems; it corresponds for instance to an over
four orders ofmagnitude increase over recently demonstrated superfluid heliumfilled fiber cavities [12]. High
cooperativities and large optomechanical coupling rates are essential for such applications as ultra-high
precision quantum-limitedmeasurement [1] of the superfluidmotion,mechanical ground state cooling [2] and
accessing the strong coupling regime [49, 50] between light and third sound excitations.

4.3. Influence of third soundmode radial order n
The effectivemass of a third soundmode is inversely proportional to z2, as shown in equation (13). This
relationship arises because as ζ increases, the ratio of vertical to horizontal superfluidmotion becomesmore
favorable, as the distance between the peaks and the troughs of the third soundwave is reduced (see figure 3).
Higher order radial third soundmodes (with higher ζ; see table 2) therefore exibit lower meff and larger xzpf (see
table 3). Note that this is the opposite behaviour to that for a solidmembrane, inwhich xzpf decreases with
increasingmode order. Figure 4(d) plots results of FEM simulations of g0 versus third soundmode radial order
n, obtained through equation (14) for a m=R 20 m diskwith d=30 nm. It reveals two competing trends. First,
and initially dominating, is the increase in g0 due to the increase in xzpf . Second, for higher n, the third sound
displacement becomes oscillatory over theWGM (see inset) leading to a dramatically reduced overlap integral,
see equation (14). In this particular case g0 reaches itsmaximal value of p ´2 16 kHz for n=5 and

pW =2 71 kHzM . The optimal radial order will naturally depend on device dimensions, with largerR leading
to a larger optimal n. These higher ordermodes provide a twofold benefit: beyond the higher g0, they have a
higher frequency and therefore exhibit a lower thermal phonon occupancy n̄ for a given bath temperature.
Starting from a base temperature of 50mK, on the order of = ´n 5 10c

3 intracavity photonswould be
sufficient to feedback cool [14, 51] thismode into its quantumground state [2], with the required nc increasing
linearly with base temperature.

Table 3. Scaling of experimental parameters
with resonator radiusR,film thickness d and
mode order ζ. Table should be read horizontally.
Symbols – and † respectively denote no
dependence and a non-monotonous
dependence.

R d ζ

m ∝ R2 d −
meff ∝ R4 -d 1 z-2

WM ∝ -R 1 -d 3 2 ζ

xZPF ∝ -R 3 2 d5 4 z1 2

g0 ∝ † d5 4 †

2
The presence of the superfluid heliumfilm around the resonator does not adversely affect the opticalQ due to superfluid helium’s ultralow

optical absorption in the infrared [12, 13].
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4.4.Miniaturized third sound resonators
Finally we briefly address the potential ofmicrometer-sizedWGMresonatorsmade of high refractive index
semiconductors such as silicon [29, 52] or gallium arsenide [5, 53] for thin-film superfluid optomechanics. The
optimal resonator thicknesses given infigure 2(d) are chosen tomaximize theWGMdeconfinement, resulting
in lowWGMeffective indices, and therefore do not lend themselves towavelength-sized radii without incurring
significant bending losses [54]. For this reasonwe consider thickermore confining disks for this application,
such as 200 nm thickness for TEmodes [53]. This trade-off between sensitivity and opticalQ results in a lower

pG 2 on the order of 1 GHz nm–1. The pW =2 330 kHzM (m=0; n=1) third soundmode of a 30 nm thick
film confined on top of aR=1 μmdisk has a zero pointmotion = ´ -x 1.6 10zpf

13 mat the periphery and a
large optomechanical coupling rate reaching up to p= ´g 2 136 kHz0 . Because of the lower opticalQ of these
resonators however, the expected cooperativityC0 is on parwith that expected for larger silica resonators.

5. Conclusion

Wehave investigated the potential of thin films of superfluid 4He coveringmicrometer-scale whispering gallery
mode cavities as optomechanical resonators. Our analysis predicts large optomechanical coupling and
cooperativities are achievable, and provides useful tools for the design of third-sound optomechanical
resonators. Furthermore, beyond their solemerits for ‘conventional’ optomechanics, the ability to engineer
interactions between third sound phonons and quantized vortices [17–20] aswell as electrons [21], combined
with the ability to control superfluidflowon-chip [14] and generate long-lived persistent flows [55], makes this a
promising platformwith varied applications such as ground-state cooling of a liquid, on-chip inertial sensing
[56], single-photon optomechanics [57, 58] and the study of the dynamics of strongly interacting quantum
fluids.
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AppendixA. Annularmicrodisk

Herewe consider the case of a third soundwave confined on the surface of an annular disk resonator, as
illustrated infigure A1(a). In this case, the surface deformation profile h q( )r,m n, is given by [59]:

h q q= +( ) ( ( ) ( )) ( ) ( )r A J k r B Y k r m, cos , A.1m n m n m m n m n m m n, , , , ,

wherem and n are respectively the azimuthal and radialmode numbers, Am n, and Bm n, mode amplitude
coefficients and Jm andYm respectively the Bessel functions of thefirst and second kind of orderm. For the free-
free boundary condition in =r Rin and =r Rout, thewavenumber km n, is defined as the nth root of the
equation:

Figure A1.Annular disk case. (a) Schematic of an annular disk resonator, of inner radiusRin and outer radiusRout. (b)Calculated
single photon optomechanical coupling strength pg 20 andmechanical frequency pW 2M for the (m=0; n=1) third soundmode
with free–free boundary conditions (see inset) as a function ofRin, for a d=30 nm thick superfluidfilm. The value of -R Rout in is
kept constant at 4microns.We obtain p =G 2 4.6 GHz nm–1 (accounting for themode overlap between third sound profile and
WGM) fromFEMsimulations (see inset). (c)Predicted single photon optomechanical cooperativityC0 and effectivemass meff as a
function of inner radius, for the same parameters as (b).
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¢ ¢ - ¢ ¢ =( ) ( ) ( ) ( ) ( )J k R Y k R Y k R J k R 0 A.2m m m mout in out in

and the coefficientsA andB are found by imposing the free boundary conditions inRin andRout (i.e.
h h¶ = ¶ =( ) ( )R R 0r in r out ). Following the same approach outlined in themain text, we numerically calculate

the values of pW 2M and pg 20 as a function of resonator dimensions for the annular disk case. This is shown in
figure A1(b), whereRin is swept from10−5m to 1 mm,while the annulus width ( -R Rout in) is kept constant at 4
microns. As the third sound frequency only depends on the annular width, WM remains constant over the entire
range (blue line). For afixed annular width, increasingRin results in the effectivemass increasing nearly linearly
(simply as the resonator surface area), resulting in amuch less dramatic decrease in g0 with resonator radius
when compared to the disk case (seefigure 4), with for example p> ´g 2 5 kHz0 onmillimeter-sized annular
resonators. Figure A1(c) plots the dependence ofC0 and meff over the same parameter range. The predicted
value ofC0 assumes a constantQM=4000 and =Q 10opt

7, as in the disk case (see section 4.2), and reaches 22
for the smallest resonators.

Appendix B.Microsphere resonator

Herewe briefly address the optomechanical coupling between third sound and light respectively confined on the
surface of and inside amicrosphere resonator [22, 60], see figure B1(a). In analogy to the disk case, wemodel the
third soundmode profile hl m, on a sphere as:

h q j q j=( ) ( ) ( )A Y, , B.1l m l m l
m

, ,

with Al m, themode amplitude andYl
m the Laplace spherical harmonic of degree l and orderm, solution to

Laplace’s equation on a sphere. Following the same treatment outlined in section 3.2, we derive the effective
mass of a point situated on the sphere’s equator (j p= 2):

ò ò òr q j j

h q j p
=

= W
j

p

q

p h q j

= =

+( )( ) ( )

( )
( )

( )

m
U z z R2 d d sin d

, 2
. B.2

d

d

M
eff, sphere

0 0

2 , 2

2 2

Which, substituting W = +( )c l l R1M 3 , for amode rotationally invariant along θ simplifies to:

òr
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pr h j j j
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Herewe recognize the same R d4 effectivemass scaling as in the disk case (see equation (13)). Next, as discussed

in section 2, we set = w e
e

-
-( )G

Rsphere
1

1
0 sf

SiO2

and use this approximation to calculate the optomechanical coupling

rate g0. This is shown infigure B1(b) for the (l=2;m=0) third soundmode. Thismode corresponds to the
superfluid sloshing back and forth between the equator and the poles, as illustrated in the inset, and naturally
exhibits good optomechanical coupling to aWGM localized on the sphere’s equator. As in the case of a disk
resonator, WM scales as 1/R and xZPF scales as -R ;3 2 however the dependence of g0 onR is even steeper than in
the disk case, since for a sphereG is also inversely proportional toR. For a sphere of radiusR=20microns and a
30 nm thick film, p= ´g 2 410 Hz0 , approximately 28 times less than for the (m=0; n=1)mode of a disk of
identical radius (see figure 4(b)). This smaller value has two distinct origins: a 2.2 times smaller xZPF for the third
soundmode on the sphere, because of its larger effectivemass, and a 12.5 times smaller G compared to the disk
case because of theweaker interaction between the superfluid film and theWGM in the sphere, as discussed in
section 2. Finallyfigure B1(c) plots the dependence ofC0 and meff on sphere radius, for a 30 nm thick superfluid

Figure B1.Microsphere case. (a) Schematic of amicrosphere on a pedestal, with spherical coordinatesR, θ andj. (b) Single photon
optomechanical coupling strength pg 20 andmechanical frequency pW 2M for the (l=2;m=0) third soundmode (see inset
representing the extremes of third sound displacement, with fluid pooled at the poles (left) and equator (right)) as a function of sphere
radius, for a d=30 nm thick superfluidfilm. Solid lines: analytical formula. (c)Predicted single photon optomechanical cooperativity
C0 and effectivemass meff as a function of sphere radius, for the same third soundmode and film thickness as (b).
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film. The predicted value ofC0 assumes a constantQM=4000 and =Q 10opt
9 [60]. This plot underscores the

strong dependence of meff with sphere radius: asR goes from10microns to 2 mm, meff spans over 9 orders of
magnitude. ForR=2 mm, meff reaches 130 g, i.e. over ´5 108 times the actualmass of the superfluid film.
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