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Abstract

Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity
optomechanics schemes. Here we numerically and analytically investigate the properties of
optomechanical resonators formed by thin films of superfluid *“He covering micrometer-scale
whispering gallery mode cavities. We predict that through proper optimization of the interaction
between film and optical field, large optomechanical coupling rates g, > 27 x 100 kHz and single
photon cooperativities Cy > 10 are achievable. Our analytical model reveals the unconventional
behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and
larger zero point motion. The optomechanical system outlined here provides access to unusual
regimes such as g, > (), and opens the prospect of laser cooling a liquid into its quantum ground
state.

1. Introduction

The field of cavity optomechanics [ 1] focuses on the interaction between confined light and a mechanical degree
of freedom. Optomechanical techniques enable an exquisite degree of control over the motion of
micromechanical resonators, with successful examples including ground-state cooling [2] and squeezing of the
mechanical motion of a resonator [3]. Recently, in a push to extend the realm of applications to biological
systems, there has been a growing interest in the study of resonators immersed or interacting with liquids [4—6],
or the use of liquids as resonators [7]. In parallel, a special type of quantum liquid, namely superfluid helium, has
also garnered significant attention for optomechanical applications, but for a different reason: the motivation
here being the ultra-low optical and mechanical dissipation it can provide due to its reduced optical scattering
[8] and absence of viscosity [9, 10]; with both properties being particularly desirable for quantum operations.

To date, the majority of superfluid optomechanics schemes have relied on bulk helium, with
implementations taking for example the form of a gram-scale resonator coupled to a superconducting
microwave resonator [9], a capacitively detected superfluid Helmholtz resonator [11] or a helium-filled fiber
cavity [12].

In contrast, our group recently demonstrated an approach to superfluid optomechanics based on
femtogram thin films of superfluid “He condensed on the surface of a microtoroidal whispering gallery
resonator [13, 14]. Leveraging the techniques of cavity optomechanics, we demonstrated real-time observation
of the superfluid Brownian motion, laser cooling of the superfluid excitations [ 13], as well as the possibility to
apply large optical forces at the microscale arising from the atomic recoil of superfluid helium flow [ 14].
However these devices, while exhibiting strong photothermal coupling, suffered from reduced radiation
pressure coupling due to a poor overlap between the optical field and the superfluid mechanical excitations
(known as third sound [15], see section 3).

In this work, we theoretically design a superfluid thin film resonator from the ground up, carefully
optimizing the interaction between superfluid film and optical field (section 2), in order to maximize the
dispersive radiation-pressure optomechanical coupling. We investigate three different resonator geometries
(microdisk, annular microdisk and microsphere), and provide useful analytical expressions for the effective

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/aa520d
mailto:c.baker3@uq.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa520d&domain=pdf&date_stamp=2016-12-22
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa520d&domain=pdf&date_stamp=2016-12-22
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 18 (2016) 123025 C G Baker etal

Figure 1. (a) Artistic rendering of a disk-shaped optical resonator sustaining an optical WGM resonance (red and blue) coveredina
superfluid helium thin film. (b) Radial cross-section showing a finite element method (FEM) simulation of the WGM field intensity.
The oscillating superfluid wave on the top surface of the resonator (solid and dashed white lines) dispersively couples to the WGM via
equation (1). (c) The case of an annular microdisk (top) and a microsphere resonator (bottom) are discussed separately in appendices
AandB.

mass and zero-point motion of superfluid films (section 3), as well as the scaling of optomechanical figures of
merit with experimental parameters such as resonator dimensions and superfluid film thickness (section 4).
Based upon this analysis, we predict large optomechanical coupling rates g, > 2w x 100 kHz and single
photon cooperativities C, greater than 10 are achievable with experimentally accessible designs, as well as
unconventional regimes such as g, greater than the mechanical resonance frequency (2.

Superfluid thin films present a number of desirable properties: they are naturally self-assembling on the
surface of any resonator due to a combination of ultra-low viscosity and attractive van der Waals forces [10], they
can be of extremely minute volume, with third sound detected in films only two monolayers thick [ 16] and they
offer alarge degree of tunability as their thickness and the frequency of the excitations they sustain can be swept
in situ over alarge range simply by changing the helium pressure in the sample chamber. In addition, third
sound can exhibit strong Duffing nonlinearities, be strongly coupled to quantized vortices [17—20] and interact
with electrons floating on the film [21]. All together, these properties underline the potential of superfluid thin
films as a promising platform for cavity optomechanics.

2. Optical field optimization

Figure 1 shows a schematic illustration of the optomechanical coupling scheme investigated in this paper. A
circular whispering gallery mode (WGM) resonator [22] is uniformly coated with a thin film of superfluid
helium [13]. Acoustic waves in this thin film known as third sound [15, 23, 24] manifest as thickness variations
which dispersively couple to the confined WGM via perturbations to its evanescent field. As shown in

figure 1(b), the fluctuating thickness of the superfluid in the vicinity of the WGM induced by a third sound wave
modulates the amount of higher refractive index material in the WGM’s near field, thereby changing the optical
path length of the resonator. The frequency shift Aw experienced by a WGM of resonance frequency wy due to
the presence of the superfluid thin film is given by a perturbation theory approach [25]:

Aw 1 Jyy G = DIEGPET

= = 5 1
wo 2 [ @) E@®PDET .

where E is the unperturbed WGM electric field calculated in the absence of superfluid, ¢, () is the relative
permittivity and e = 1.058 is the relative permittivity of superfluid helium [26]. The numerator integral is
taken over the volume of the film while the denominator integral is taken over all space; equation (1) therefore
essentially relates the electromagnetic (EM) energy ‘sensing’ the perturbing element (the film) to the total EM
energy in the mode. Figure 2(a) plots a FEM simulation of |E |? for a transverse electric (TE) [27] WGM of
wavelength A = 1.5 yum confined in a typical silica disk of radius R = 40 pm and 2 pm thickness [28].
Overlayed in black is a plot of the vertical dependence of | E |* along the dashed black line going through the
center of the WGM. The field is mostly confined within the silica resonator, and has low intensity on the top and
bottom interface where it is in contact with the superfluid film (red dashes), resulting in weak detection
sensitivity/optomechanical coupling through equation (1). This limitation can be overcome by a proper choice
of disk thickness and WGM polarization so as to maximize the electric field at the interface, as discussed in the
following. Figure 2(b) shows the same vertical mode profile for a transverse magnetic (TM) polarized WGM in a
400 nm thick silica disk of identical radius, and for a TE WGM confined in a 200 nm thick disk. Reducing the
thickness of the disk pushes the field out of the resonator, increasing |1:f |2 over the superfluid region, such that
any fluctuation in the film thickness results in a much larger frequency shift of the WGM. Figure 2(c) provides a
more systematic investigation of this mechanism. We employ the effective index method (EIM) [27] to calculate

2
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Figure 2. (a) FEM simulation showing the radial cross-section of a TE WGM of wavelength 1.5 ym confined in a silica disk of 40 ym
radiusand 2 yum thickness. Overlayed in black is a plot of the | E |2 (z) mode profile along the dashed black line going through the
center of the WGM. The red region indicates the superfluid film on top and bottom. (b) Vertical mode profiles |E |? (z) fora 1.5 um
wavelength TM (resp. TE) WGM confined ina400 nm (200 nm) thick, 40 gm radius disk. The dashed red lines mark the disk upper
and lower boundaries. Inset: FEM radial cross-section of |E[? for each WGM. (c) Value of E* at the interface calculated using the EIM,
for TM (blue) and TE (orange) polarized modes. Right axis: optical frequency shift per nm of superfluid G/27. (d) Indicative optimal
disk thickness for maximal field at the interface and superfluid detection, as a function of disk material refractive index.

the mode profile for a TE and TM guided wave inside a slab waveguide of varying thickness (normalized such
that f_ o; g.E*dz = 1), recording for each thickness the value of E? at the interface. For each polarization there is
an optimal thickness which maximizes E” at the interface: too thick and the field is mostly confined within the
resonator, too thin and the field becomes very delocalized along z and its value at the interface drops again. From
this analysis, we obtain the optimal silica disk thickness for TM (TE) WGMs as approximately 400 nm (200 nm).
Next, we repeat the same analysis for different values of the refractive index of the slab, while tracking the optimal
thickness for TE and TM WGMs. These results are summarized in figure 2(d) and show for instance that for a
high refractive index material such as silicon or gallium arsenide, a disk thickness of ~200 nm is optimal for TM
polarized WGMs. Since these results are based on the EIM, they start to lose accuracy for strongly confining
geometries (R on the order of a few \); nevertheless they provide a useful starting point for designing optimized
structures. The TM polarized WGMs, with dominant field component E, normal to the upper and lower
interfaces, provide a step increase in the field outside the disk (due to the continuity of €, E, ), as shown in

figure 2(b), and are therefore more sensitive to the superfluid [29].

Since the evanescent field decays along z with characteristic length on the order of hundreds of nanometers
(figure 2(b)), the change in | E |* over the typical Az = 1to 30 nm thickness of the film can safely be neglected.
Equation (1) can therefore be rearranged to give the optomechanical optical resonance frequency shift per unit
displacement G = Awy/Az [1,30,31]:

AWO Wo fnterface (ESf B 1) |E (?) |2d2?

G= = ‘ - , 2
Az 2 [ a@ E@®PET @

where the numerator integral is now a surface integral over the resonator top interface'. We employ the one-
dimensional version of equation (2) (G = — % (e — 1)E*(0) / f & (2)E? (z)dz) to provide G/2m as a function
of resonator thickness in the right axis of figure 2(c). (This 1D model is valid in the same regime as the EIM). As
for double-disk optomechanical resonators [32], G is independent of resonator radius and does also not depend
on superfluid thickness. Proper choice of resonator thickness is important, resulting for instance in a 20-fold
improvement in G for TM modes when going from a2 ym to a 0.4 pm thick silica disk. Through this

For simplicity we will in the following consider excitations on the top surface of the resonator, although the treatment follows the same
approach for the bottom surface, but with different boundary conditions for the third sound wave due to the presence of the pedestal.
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optimization, it is possible to reach large values of G upwards of 6 GHz nm™, despite the challenge posed by
superfluid helium’s optical properties being very close to those of vacuum (¢, = 1.058, n = 1.029) [26]. This is
achieved in part thanks to the perfect spatial overlap provided by the self-assembling nature of the superfluid
film: these predicted coupling rates are for instance nearly three orders of magnitude larger than those obtained
in experiments in which a silicon nitride string was approached in a microtoroid’s near field [25]. Note
additionaly that unlike the previously mentioned scheme in which a perturbing element of constant volume is
approached in the near field of a resonator [25, 33—35], this detection approach does not rely on an electric field
gradient along the z direction, as we are instead detecting a perturbing element of changing volume.

Itis interesting to examine whether large coupling rates can also be achieved for superfluid modes confined
to the vertical sidewall of the WGM. For a circular WGM cavity, the sensitivity to a change in radius is given by
Gradial = % [36]. From equation (2), but integrated along the vertical, rather than top boundary, it can be shown
that fluctuations in the thickness of the superfluid film on the vertical boundary would translate to

Gyertical/ 20 2 =2 (i) /27~ 0.25 GHz nm ™" with the above parameters.

R \ 1 - &si0,
Here we have discussed the sensitivity to thickness fluctuations affecting either the top, bottom or vertical
boundaries of the resonator. Naturally, a variation in the mean thickness of the film would produce a frequency
shift of 2G + Gyerticat > 10 GHz nm™". This means a change in film thickness of 10 pm (i.e. %th ofahelium

monolayer [37]) would be sufficient to shifta WGM resonance with Q = 2 x 10° by one linewidth, thereby
providing an ultra-precise independent means to optically characterize the superfluid film thickness, a
significant improvement over capacitive detection schemes commonly used in the superfluid

community [24, 38].

3. Superfluid third sound modes

Third sound waves [13, 15, 16, 23, 24, 39] are a type of excitation unique to superfluid thin films which manifest
as thickness fluctuations with a restoring force provided by the van der Waals interaction; they are somewhat
analogous to water waves (where the restoring force is gravity) [40], see figure 3(a). Third sound propagates ata

speed c; given by [10]:
_ Ps Clydw
= /3;57 > 3)

with p,/p the ratio of superfluid to total fluid density [10], aqy the van der Waals coefficient characterizing the
strength of the attractive force between the helium atoms and the substrate, and d the superfluid film mean
thickness. The van der Waals coefficients for various resonator materials are provided in table 1. The 1 /d?
dependency in c; neglects the retardation effects in the van der Waals potential and is a reasonable first order
approximation for films 0-30 nm thick [37, 41] which we will consider here. The disk geometry, in addition to
providing optical confinement to the WGMs, also confines third sound excitations localized on the top surface,
giving rise to third sound resonances. The shape of these resonant modes is dictated by the confining geometry
and, for circular resonators, these take the form of Bessel modes as shown in figure 3(a) [18, 24, 39]. The third
sound mode profile 7, describes the out-of-plane deformation of the superfluid surface for the (m; n) mode as
afunction of time ¢t and polar coordinates rand 6:

Ny (15 05 1) = A ]m(Cm,ﬂ%) cos (mf) sin (1), (C))

where m and n are respectively the azimuthal and radial mode numbers, A the mode amplitude, J,,, the Bessel
function of the firstkind of order m, {4y = ((,,, ,,¢3)/R the mode frequency and (,, , a frequency parameter
depending on the mode order and the boundary conditions, see table 2. In the following we only focus on the
rotationally invariant modes (1 = 0), as these are the ones with largest optomechanical coupling [36].

3.1. Boundary conditions

The mode profiles for the first three rotationally invariant third sound modes with fixed (n(R) = 0) and free
(0 (R) = 0)boundary conditions [43] are shown in figure 3(b). The free boundary condition is also known as
the ‘no flow’ boundary condition, as it requires the radial velocity of the superfluid flow tobe 0 at r = R[43], and
is therefore volume conserving. On the contrary, the fixed boundary condition does not conserve volume
(particularly visible for the (m = 0;n = 1) mode), and therefore requires significant flow across the confining
boundary, in the incompressible limit. In circular *He third sound resonators a crossover from free to fixed
boundary conditions has been observed for films thicker than ~200 nm [43, 44]. For our resonator design, with
thin films and near atomically sharp ‘knife-edge like’ [45] microfabricated boundaries, we expect minimal third
sound driven flow to occur between the disk’s upper and lower surfaces. This implies free boundary conditions

4
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Figure 3. Superfluid third sound. (a) Left: schematic illustration of a superfluid third sound wave with profile 7 (¥) on a film of mean
thickness d (dashed orange line). The normal fluid component [46] is viscously clamped to the surface, while the superfluid
component p; oscillates mostly parallel to the substrate (blue arrows). Right: plot of the surface profile for the (i = 0;1n = 3) Bessel
mode with free boundary conditions. (b) Radial profile 7 (r) along the dashed red line in (a) for the (im = 0;n = 1)-blue—, (m = 0;
n = 2)—green—and (m = 0;n = 3)-red— Bessel modes with fixed (left) and free (right) boundary conditions. (c) Comparison
between the trajectory described by a ‘particle’ in a fluid (left) and a solid membrane (right).

Table 1. Van der Waals coefficients for a few

resonator materials.

Material Qydw Source
Silica 2.6 X 1072 m° s> [16,42]
CaF, 22 x 107 m®s2 [42]
Silicon 35 x 100 m’s? [42]
MgO 2.8 X 107 m° s> [37]

Table 2. First eight values of the frequency parameter ¢, , for fixed and free boundary conditions. In the case of fixed (free) boundary
conditions, these correspond to the zeroes of Jo (Jg)-

n=1 n=2 n=3 n=4 n=>5 n==~6 n=7 n=3_8 n=9 n =10
Free 3.832 7.016 10.174 13.324 16.471 19.616 22.760 25.904 29.047 32.19
Fixed 2.405 5.520 8.654 11.792 14.931 18.071 21.212 24.353 27.49 30.63

for the third sound wave, consistent with those observed in circular *He third sound resonators most similar to
our design [18, 39].

3.2. Third sound mode effective mass

Calculating the optomechanical single photon coupling strength gy and single photon cooperativity Co—useful
figures of merit of the optomechanical system [ 1] (see equation (5))—requires the third sound mode effective

Mass Mg
7 4g7

gO:Gprf:G— Cyo= 0 (5
2 megr Oy K Iu
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In continuum mechanics, the effective mass at reduction point A is obtained by reducing the system to a
point mass 1 moving with velocity v (A) possessing the same kinetic energy Ej as the original system, that is
28
Meff = —5, OT:
VA

NS GG
Meff = ————o—. (6)
v2(A)
For rotationally invariant modes of a thin solid circular resonator of thickness d, this leads to the well known
expression for the effective mass of a point on the resonator boundary [47]:
fo o n*(r)dr
Meff solid = 27Tpd ———. (7)
n*(R)

Going from equations (6) to (7) assumes the velocity v (7') (and density) do not depend on the z coordinate,
which is valid for both in- and out-of-plane mechanical modes. Here, in order to circumvent the question of the
distribution of superfluid velocity [ 15] and density [ 16] below the film surface, we use the equipartition theorem
to replace the kinetic energy term in equation (6) with the van der Waals potential energy stored in the
deformation of the film surface. In analogy to gravity waves [40], this energy is given by:

27T R d+n(r,0) i R d
Ept=p s fr:() (fz_o U(z)dz)r drdf — p o j::o (»/;_0 U(z)dz]r dr df

= pf(;zﬂ L/;R (f;dﬂ,(r’a) U(z)dz)r dr déo, (8)

where U (z) is the energy per unit mass of the film due to the van der Waals potential [10]:

Ue) = -2, 9)
zZ

In the limit of small amplitude surface oscillation 7 < d, we obtain:

dtn(r,0) Qiydw 77(r> 9) 3 Qiyaw 7]2 (T’, 9)
U(z)dz = — . 10
/. () y v (10)
Therefore equation (8) becomes for rotationally invariant modes:
E _ 27_[_pr drrl = Qydw 77(1‘) + 3 Qyaw 7)2(7) (11)
pot 0 a3 2d* '

R
As mentioned previously, free (‘no flow’) boundary conditions are volume conserving ( fo rdrn(r)=0),
therefore we obtain for the effective mass of a point on the film surface atr = R:

R
2Bt 6T P Qlydw d*”‘fo rn?(r)dr

= - 12
TR PR, "
Finally, using (0 = % and equation (3) we find:
R
2 rn?(r)dr
Mefr = £ (5) i X 2mpd “/(‘)—. (13)
pJ)\d) ¢ n*(R)

Here we recognize the effective mass of the solid case (equation (7)), multiplied by a prefactor proportional to
(R/d)?. This means that while for a solid such as a circular membrane . scales as expected as R?d (like the real
mass), for a third sound wave on a superfluid film m.¢ scales as R*/d—with thicker and heavier films therefore
making for lighter resonators possessing larger zero point motion. This radically different scaling can be
understood by considering the microscopic motion of a ‘particle’ of the resonator in both cases, as illustrated in
figure 3(c). Indeed, while the surface deformation in each case is governed by the same mathematical equation
(equation (4)), a particle in the solid describes an essentially vertical motion while that in a fluid an extremely
flattened near horizontal trajectory. As the useful displacement for optomechanical coupling is in the z direction,
the horizontal particle excursion (xxR) and horizontal kinetic energy are ‘wasted’ and appear as a penalty term in
the effective mass.

The R* dependence of m.¢ underscores the dramatic gains achieved by going towards smaller
microfabricated third sound resonators. Indeed, going from a centimeter-scale third sound resonator [18] to a
40 micron radius resonator such as outlined here and demonstrated in [13] affords—with otherwise identical
parameters—a 5 x 10° reduction in effective mass and identical boost in cooperativity (equation (5)).

6
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Figure 4. Optomechanical parameters.(a) Single photon optomechanical coupling strength g,/27 and mechanical frequency /27
for the fundamental (m = 0;n = 1) third sound mode as a function of resonator radius, forad = 30 nm thick superfluid film. Solid
line: analytical formula, points: individual FEM simulations. Inset: FEM simulation displaying the WGM overlayed with the third
sound mode displacement profile (colored line). (b) £,/ 2 (blue) and g,/27 (orange) as a function of film thickness for a
R = 20 pm disk. (c) Predicted single photon optomechanical cooperativity Cy as a function of film thickness d, fora R = 20 pm
disk. (d) Influence of third sound radial mode order non g,/27, for R = 20 um and d = 30 nm. Inset: mechanical surface
deformation profiles and FEM simulation showing the WGM mode overlayed with the displacement profile of the (m = 0;n = 14)
third sound mode. All results are for free boundary conditions.

Note interestingly that we recover exactly the same R*/d effective mass scaling if we consider a gravitational
wave in a normal liquid (by substituting the gravitational potential ¢ z in equation (9)), and consider the shallow
water limit (A > d) where the speed of sound ¢ = /g d only depends on liquid height [40].

4. Optomechanical coupling

In this section we evaluate the performance of superfluid thin films as optomechanical resonators and
successively address how this performance is influenced by resonator dimensions, film thickness and
mechanical mode order.

4.1. Influence of resonator radius

Figure 4(a) plots the dependence of third sound frequency €},/27 and g,/27 on resonator radius for the
fundamental (m = 0;n = 1) third sound mode on a 30 nm thick superfluid film. The solid orange line
corresponds to the value of g, given by equation (5), employing the previously determined value of #1.¢¢
(equation (13)) and assuming a constant G/27m = 6.6 GHz nm™" (see section 2). Thisisa good assumption for
disk radii above ~20 pm, as the micron sized radial extension of the WGM is small compared to R, and the
superfluid displacement is therefore essentially constant over the optical mode (see inset). For smaller radii (and
higher order mechanical modes—see section 4.3) the mode overlap between the optical field and the third sound
displacement field needs to be taken into account when calculating g:

_ﬂ ji‘nterface q(€5f B l)lﬁ(?)|2d2?
2 [, & MIE®PET

& =

(14)

Here g = % X,pt is the superfluid displacement profile normalized to x,,¢ at R. The orange dots correspond to

the results of individual FEM simulations using equation (14) with TM WGM:s on a 380 nm thick silica disk. The
analytical expression is in good agreement with the FEM simulation down to R ~ 20 pum (<10 % error), below

7
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Table 3. Scaling of experimental parameters
with resonator radius R, film thickness d and
mode order (. Table should be read horizontally.
Symbols—and 1 respectively denote no
dependence and a non-monotonous

dependence.

R d ¢
m o R? d -
Mefp o R* d! ¢?
Qs o R! d-3/2 ¢
XzpE . R3/2 43/4 2
% x T d/ T

which it overestimates g,. Since the mechanical frequency scales as R~! and the zero point motion as R—3/2, g,
increases faster than {2y, as Ris reduced, and for R < 20 pm the system enters the uncommon optomechanical

regime of g, > (. Table 3 summarizes the relevant scaling parameters for a disk resonator based on
equations (3)—(5) and (13).

4.2. Influence of superfluid film thickness

Figure 4(b) plots the dependence of {1, /27 and g,/27 on superfluid film thickness, fora R = 20 m
resonator. Since () scales as d /2 and goas d°/4 (see table 3), both parameters start with extremely dissimilar
values for thin films and evolve towards one another as d increases. In this particular case,

g = O ~ 27 x 13.5 kHz for d = 34 nm. We take into account the WGM |E |* field decay as the film gets
thicker, but this is only a minor correction for the thin films we consider here. Next we plot in figure 4(c) the
dependence of the single photon cooperativity C, (equation (5)) on d. For this estimation we consider an optical
loss rate /27 = 20 MHz corresponding to an optical Q of 10” as demonstrated in thin silica disks of identical
radius’ [35], and a conservative estimate for the mechanical Q,; = /I 0f4000, as demonstrated in our
previous work with microtoroid resonators [13]. (Note that third sound dissipation rates several orders of
magnitude below these values have already been demonstrated [39]).The predicted cooperativity displays a
strong dependence on film thickness, reaching large values above unity, with Cy = 6 for d = 30 nm. This value
—on par with the state-of-the-art in optomechanical systems [2, 48]—would represent a significant increase in
performance compared to existing superfluid optomechanics systems; it corresponds for instance to an over
four orders of magnitude increase over recently demonstrated superfluid helium filled fiber cavities [12]. High
cooperativities and large optomechanical coupling rates are essential for such applications as ultra-high
precision quantum-limited measurement [1] of the superfluid motion, mechanical ground state cooling [2] and
accessing the strong coupling regime [49, 50] between light and third sound excitations.

4.3. Influence of third sound mode radial order n

The effective mass of a third sound mode is inversely proportional to (2, as shown in equation (13). This
relationship arises because as  increases, the ratio of vertical to horizontal superfluid motion becomes more
favorable, as the distance between the peaks and the troughs of the third sound wave is reduced (see figure 3).
Higher order radial third sound modes (with higher (; see table 2) therefore exibit lower . and larger x,,¢ (see
table 3). Note that this is the opposite behaviour to that for a solid membrane, in which x,,¢ decreases with
increasing mode order. Figure 4(d) plots results of FEM simulations of g, versus third sound mode radial order
n, obtained through equation (14) fora R = 20 pm disk with d = 30 nm. It reveals two competing trends. First,
and initially dominating, is the increase in gy due to the increase in Xypf- Second, for higher n, the third sound
displacement becomes oscillatory over the WGM (see inset) leading to a dramatically reduced overlap integral,
see equation (14). In this particular case g, reaches its maximal value of 271 x 16 kHz forn = 5and

/27 = 71 kHz. The optimal radial order will naturally depend on device dimensions, with larger R leading
to alarger optimal n. These higher order modes provide a twofold benefit: beyond the higher g;, they have a
higher frequency and therefore exhibit alower thermal phonon occupancy 7 for a given bath temperature.
Starting from a base temperature of 50 mK, on the order of n, = 5 x 10 intracavity photons would be
sufficient to feedback cool [ 14, 51] this mode into its quantum ground state [2], with the required . increasing
linearly with base temperature.

% The presence of the superfluid helium film around the resonator does not adversely affect the optical Q due to superfluid helium’s ultralow
optical absorption in the infrared [12, 13].
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Figure Al. Annular disk case. (a) Schematic of an annular disk resonator, of inner radius R;, and outer radius R,,,. (b) Calculated
single photon optomechanical coupling strength g, /27 and mechanical frequency /27 for the (m = 0;n = 1) third sound mode
with free—free boundary conditions (see inset) as a function of R;,,, forad = 30 nm thick superfluid film. The value of Ry — Ry, is
kept constant at 4 microns. We obtain G /27 = 4.6 GHz nm™' (accounting for the mode overlap between third sound profile and
WGM) from FEM simulations (see inset). (¢) Predicted single photon optomechanical cooperativity Cy and effective mass 1. asa
function of inner radius, for the same parameters as (b).

4.4. Miniaturized third sound resonators

Finally we briefly address the potential of micrometer-sized WGM resonators made of high refractive index
semiconductors such as silicon [29, 52] or gallium arsenide [5, 53] for thin-film superfluid optomechanics. The
optimal resonator thicknesses given in figure 2(d) are chosen to maximize the WGM deconfinement, resulting
inlow WGM effective indices, and therefore do not lend themselves to wavelength-sized radii without incurring
significant bending losses [54]. For this reason we consider thicker more confining disks for this application,
such as 200 nm thickness for TE modes [53]. This trade-off between sensitivity and optical Q results in alower
G/2m onthe order of 1 GHz nm™". The €, /27 = 330 kHz (m = 0;n = 1) third sound mode of a 30 nm thick
film confined on top ofa R = 1 m disk has a zero point motion x,,r = 1.6 x 107" mat the peripheryanda
large optomechanical coupling rate reaching up to g, = 27 x 136 kHz. Because of the lower optical Q of these
resonators however, the expected cooperativity C, is on par with that expected for larger silica resonators.

5. Conclusion

We have investigated the potential of thin films of superfluid “He covering micrometer-scale whispering gallery
mode cavities as optomechanical resonators. Our analysis predicts large optomechanical coupling and
cooperativities are achievable, and provides useful tools for the design of third-sound optomechanical
resonators. Furthermore, beyond their sole merits for ‘conventional” optomechanics, the ability to engineer
interactions between third sound phonons and quantized vortices [17-20] as well as electrons [21], combined
with the ability to control superfluid flow on-chip [14] and generate long-lived persistent flows [55], makes this a
promising platform with varied applications such as ground-state cooling of a liquid, on-chip inertial sensing
[56], single-photon optomechanics [57, 58] and the study of the dynamics of strongly interacting quantum
fluids.
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Appendix A. Annular microdisk

Here we consider the case of a third sound wave confined on the surface of an annular disk resonator, as
illustrated in figure A1(a). In this case, the surface deformation profile 7, (r, ) is given by [59]:

N (7’, 9) = (Am,n I (km,n 1’) + Bm,n Yo (km,n T)) cos (m9)> (Al)

where m and n are respectively the azimuthal and radial mode numbers, A,, , and B,, , mode amplitude
coefficients and J,,, and Y, respectively the Bessel functions of the first and second kind of order m. For the free-
free boundary conditionin r = R;, and r = R, the wavenumber k,,, ,, is defined as the nth root of the
equation:
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Figure B1. Microsphere case. (a) Schematic of a microsphere on a pedestal, with spherical coordinates R, § and ¢. (b) Single photon
optomechanical coupling strength g, /27 and mechanical frequency /27 for the (I = 2;m = 0) third sound mode (see inset
representing the extremes of third sound displacement, with fluid pooled at the poles (left) and equator (right)) as a function of sphere
radius, forad = 30 nm thick superfluid film. Solid lines: analytical formula. (c) Predicted single photon optomechanical cooperativity
Cp and effective mass . as a function of sphere radius, for the same third sound mode and film thickness as (b).

I (k Row) Yy, (k Rin) — Y, (k Rowe) ] (k Rin) = 0 (A.2)

and the coefficients A and B are found by imposing the free boundary conditions in R;,, and Ry, (i.e.

O (Ryn) = 01 (Roy) = 0). Following the same approach outlined in the main text, we numerically calculate
the values of /2 and g,/27 as a function of resonator dimensions for the annular disk case. This is shown in
figure A1(b), where Ry, is swept from 10> m to 1 mm, while the annulus width (Ryy — Ri) is kept constant at 4
microns. As the third sound frequency only depends on the annular width, {2, remains constant over the entire
range (blue line). For a fixed annular width, increasing R, results in the effective mass increasing nearly linearly
(simply as the resonator surface area), resulting in a much less dramatic decrease in g, with resonator radius
when compared to the disk case (see figure 4), with for example g, > 27 x 5 kHz on millimeter-sized annular
resonators. Figure A1(c) plots the dependence of Cy and mg over the same parameter range. The predicted
value of Cy assumes a constant Qy; = 4000 and Qop = 107, as in the disk case (see section 4.2), and reaches 22
for the smallest resonators.

Appendix B. Microsphere resonator

Here we briefly address the optomechanical coupling between third sound and light respectively confined on the
surface of and inside a microsphere resonator [22, 60], see figure B1(a). In analogy to the disk case, we model the
third sound mode profile 77, , onasphere as:

nl,m (9) 90) = Al,m Ylm (0’ SD) (Bl)

with A, ,, the mode amplitude and Y;" the Laplace spherical harmonic of degree l and order m, solution to
Laplace’s equation on a sphere. Following the same treatment outlined in section 3.2, we derive the effective
mass of a point situated on the sphere’s equator (¢ = 7/2):

T 2w d+n(0,p) )
20 [T 7 (7 U@z )R db sin ()

meff, sphere — (BZ)
' n*(0, ¢ = 7/2),
Which, substituting 2, = ¢;+/I (I + 1) /R, for amode rotationally invariant along 8 simplifies to:
p | R 2mp j::() n*(p)sin(p)de .
Meff, sphere — | — | — R
p p)d 1A+ e =7/2)

Here we recognize the same R*/d effective mass scaling as in the disk case (see equation (13)). Next, as discussed
wo 1— Esf

in section 2, we set G, ==
> sphere R \1— 50,

) and use this approximation to calculate the optomechanical coupling
rate go. This is shown in figure B1(b) for the (I = 2; m = 0) third sound mode. This mode corresponds to the
superfluid sloshing back and forth between the equator and the poles, as illustrated in the inset, and naturally
exhibits good optomechanical coupling to a WGM localized on the sphere’s equator. As in the case of a disk
resonator, () scales as 1/R and xzpr scales as R—3/2% however the dependence of gy on R is even steeper than in
the disk case, since for a sphere G is also inversely proportional to R. For a sphere of radius R = 20 microns and a
30 nm thick film, g, = 2w x 410 Hz, approximately 28 times less than for the (m = 0;n = 1) mode of a disk of
identical radius (see figure 4(b)). This smaller value has two distinct origins: a 2.2 times smaller xzpr for the third
sound mode on the sphere, because of its larger effective mass, and a 12.5 times smaller G compared to the disk
case because of the weaker interaction between the superfluid film and the WGM in the sphere, as discussed in

section 2. Finally figure B1(c) plots the dependence of Cy and #1.¢ on sphere radius, for a 30 nm thick superfluid
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film. The predicted value of C assumes a constant Qy; = 4000 and Qqp = 10° [60]. This plot underscores the
strong dependence of m.g with sphere radius: as R goes from 10 microns to 2 mm, g spans over 9 orders of
magnitude. For R = 2 mm, m.g reaches 130 g, i.e. over 5 x 10% times the actual mass of the superfluid film.
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