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Superfluid Brillouin optomechanics
A. D. Kashkanova1, A. B. Shkarin1, C. D. Brown1, N. E. Flowers-Jacobs1, L. Childress1,2, S. W. Hoch1,
L. Hohmann3, K. Ott3, J. Reichel3 and J. G. E. Harris1,4*
Optomechanical systems couple an electromagnetic cavity to a mechanical resonator which typically is a solid object. The
range of phenomena accessible in these systems depends on the properties of the mechanical resonator and on the manner
in which it couples to the cavity fields. In both respects, a mechanical resonator formed from superfluid liquid helium o�ers
several appealing features: low electromagnetic absorption, high thermal conductivity, vanishing viscosity, well-understood
mechanical loss, and in situ alignment with cryogenic cavities. In addition, it o�ers degrees of freedom that di�er qualitatively
from those of a solid. Here, we describe an optomechanical system consisting of aminiature optical cavity filled with superfluid
helium. The cavity mirrors define optical and mechanical modes with near-perfect overlap, resulting in an optomechanical
coupling rate ∼3 kHz. This coupling is used to drive the superfluid and is also used to observe the thermal motion of the
superfluid, resolving a mean phonon number as low as eleven.

L ight confined in a cavity exerts forces on the components
that form the cavity. These forces can excite mechanical
vibrations in the cavity components, and these vibrations

can alter the propagation of light in the cavity. This interplay
between electromagnetic (EM) and mechanical degrees of freedom
is the basis of cavity optomechanics. It gives rise to a variety of
nonlinear phenomena in both the EM and mechanical domains,
and provides means for controlling and sensing EM fields and
mechanical oscillators1.

If the optomechanical interaction is approximately unitary, it can
provide access to quantum effects in the optical and mechanical
degrees of freedom1. Optomechanical systems have been used to
observe quantum effects which are remarkable in that they are
associated with the motion of massive objects2–13. They have also
been proposed for use in a range of quantum information and
sensing applications14–21. Realizing these goals typically requires
strong optomechanical coupling, weak EM and mechanical loss,
efficient cooling to cryogenic temperatures, and reduced influence
from technical noise.

So far, nearly all optomechanical devices have used mechanical
oscillators formed by solid objects1 or clouds of ultracold atomic
gases4,22,23. However, liquid oscillators offer potential advantages
with respect to both solids and ultracold gases. A liquid can
conformally fill a hollow EM cavity24, allowing for near-perfect
overlap between the cavity’s EM modes and the liquid’s normal
modes of vibration. Alternatively, an isolated liquid drop may serve
as a compact optomechanical device by confining both EM and
mechanical excitations in the drop’s whispering gallery modes25,26.
The liquid’s composition can be changed in situ27, an important
feature for applications in fluidic sensing. However, most liquids
face two important obstacles to operation in or near the quantum
regime: their viscosity results in strong mechanical damping, and
they solidify when cooled to cryogenic temperatures. Liquid helium
is exceptional in both respects, as it does not solidify under its own
vapour pressure and possesses zero viscosity in its purely superfluid
state. In addition, liquid He has low EM loss and high thermal
conductivity at cryogenic temperatures.

The mechanical and EM properties of liquid helium are both
well-studied28,29. The interaction of lightwithmechanical excitations

of superfluid He has also been studied in a variety of contexts,
including free-space (that is, without a cavity) spontaneous inelastic
light scattering from thermal excitations of first sound, second
sound, isotopic concentration, ripplons, and rotons30–34. These
experiments were carried out at relatively high temperatures
(T∼1–2K), where these excitations are strongly damped. The
combination of strong damping and the lack of confinement for
the optical or mechanical modes precluded observation of cavity
optomechanical behaviour. More recently, cavity optomechanical
interactions were measured between near-infrared (NIR) light in a
cavity and the third sound modes of a superfluid He film coating
the cavity35. This interaction was found to be fairly strong and was
used tomonitor and control the superfluid’s thermalmotion; as such
it is an important advance in superfluid optomechanics. However,
its predominantly non-unitary photothermal origin represents a
challenge to studying quantum optomechanical effects1. In the
microwave domain, a cavity was used to monitor externally
driven acoustic (first sound) modes of superfluid He inside the
cavity36. This device demonstrated very high values of both the
acoustic quality factor (∼107) and the EM quality factor (∼107);
however, the weak optomechanical coupling (estimated single-
photon coupling rate ∼4× 10−8 Hz) precluded observation of the
superfluid’s thermal motion or the cavity field’s influence upon the
acoustic modes.

Here, we describe an optomechanical system consisting of a
NIR optical cavity filled with superfluid He. We observe coupling
between the cavity’s optical modes and the superfluid’s acoustic
modes, and find that this coupling is predominantly electrostrictive
in origin (and hence unitary). The single-photon coupling rate
is ∼3× 103 Hz, enabling observation of the superfluid’s thermal
motion and of the cavity field’s influence upon the acoustic modes.
Thesemodes are cooled to 180mK (corresponding tomean phonon
number 11), and reach a maximum quality factor 6× 104. These
results agree with a simple model based on well-known material
properties, and may be improved substantially via straightforward
modifications of the present device.

The system is shown schematically in Fig. 1a. The optical cavity
is formed between a pair of single-mode optical fibres. Laser
machining is used to produce a smooth concave surface on the
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Figure 1 | Description and characterization of the superfluid-filled optical
cavity. a, Schematic illustration of the device, showing the optical cavity
formed between two optical fibres (yellow) aligned in a glass ferrule
(yellow). The ferrule is mounted in a brass cell (grey), which is attached to a
dilution refrigerator (not shown) and can be filled with superfluid helium
(blue). The lower panel shows an expanded view illustrating the
optomechanical coupling: the intensity maxima of an optical mode (red
line) overlap with the density maxima of an acoustic mode (blue shading;
lighter corresponds to denser He). For clarity, the illustration shows a cavity
with length L=2λα ; in the actual device L≈ 100λα . b, Schematic of the
measurement set-up. Red: optical components. Green: electronic
components. Light from a tunable laser (TL) passes through a frequency
shifter (FS) and a phase modulator (PM). The PM is driven by tones from a
voltage-controlled oscillator (VCO1), microwave generator (MG), and
vector network analyser (VNA). The resulting sidebands and the carrier are
delivered to the cryostat by a circulator (circle), which also sends the
reflected beams through an erbium-doped fibre amplifier (EDFA, triangle)
to a photodiode (PD). The photocurrent can be monitored by the VNA or a
microwave spectrum analyser (MSA). It is also mixed with the tone from
VCO1 to produce an error signal that is sent to VCO2, which in turn drives
the FS in order to lock the beams to the cavity. c, Illustration of the laser
beams. The LO, control, lock, and probe beams are shown (red), along with
the cavity lineshape (black). d, Intracavity power as the probe beam is
detuned. Red: empty cavity. Blue: cavity filled with liquid He. To aid
comparison, the data are normalized to their maximum value and plotted as
a function of the detuning from the cavity resonance. The solid red and blue
lines are fits to the expected Lorentzian, and give linewidths 46.1± 0.1 MHz
and 46.3± 0.2 MHz, respectively.

face of each fibre37. The radii of curvature of the two faces are
R1= 409 µm and R2= 282 µm. On each face, alternating layers of
SiO2 and Ta2O5 are deposited to form a distributed Bragg reflector
(DBR)38. The power transmissions of the DBRs areT1=1.03×10−4
and T2= 1.0× 10−5; as a result the cavity is approximately single-
sided. The fibres are aligned in a glass ferrule with inner diameter
133 ± 5 µm, as described in ref. 39, and the ferrule is epoxied
into a brass cell. The cell is mounted on the mixing chamber
(MC) of a dilution refrigerator. Liquid He is introduced into the
cell via a fill line. The measurements described here were carried
out over two cooldowns; during the first (data in Fig. 1d) the
cavity length L = 67.3 µm; during the second (all other data)
L=85.2 µm.

A closer view of the cavity is shown in the lower panel of Fig. 1a.
The optical modes are confined by the high reflectivity and concave
shape of the DBRs. The acoustic modes are confined in the same
manner (the high acoustic reflectivity is primarily due to impedance
mismatch between He and the DBR materials, see Supplementary
Information). Coupling between the optical and acoustic modes
arises via stimulated Brillouin scattering (SBS): the local optical
field exerts an electrostrictive force on the liquid, and the liquid’s
local compression or rarefaction can scatter the light. In regions
of the cavity far from the mirrors (that is, where translational
symmetry is preserved), conservation of momentum and energy
dictate that travelling photons with wavelength λα primarily scatter
into photons of the same wavelength travelling in the opposite
direction by absorbing (emitting) a phonon ofwavelengthλβ=λα/2
moving in the opposite (same) direction40. In contrast with many
systems exhibiting this ‘backwards SBS’ process, the acoustic and
optical waves in this device are confined in a Fabry–Perot cavity
that is much shorter than the optical and acoustic decay lengths
(as shown below)41. As a result, the acoustic and optical normal
modes are standing waves rather than travelling waves, and their
coupling may be understood as arising because the spatial variation
of He density associated with a standing acoustic mode can alter the
effective cavity length for a standing optical mode; equivalently, the
intensity variation associatedwith a standing opticalmode can exert
an electrostrictive force that drives a standing acoustic mode.

This coupling is described by the conventional optomechanical
Hamiltonian1 ĤOM = h̄g α,β0 â†

α
âα(b̂†

β
+ b̂β), where â†

α
is the photon

creation operator for the optical mode α, b̂†
β
is the phonon creation

operator for the acoustic mode β , and the single-photon coupling
rate is

g α,β0 =ωα(nHe−1)
∫
ρ̃β ,zpBβ(r) |Aα(r)|

2 d3r (1)

Here, Aα(r) and Bβ(r) are dimensionless, square-normalized
functions representing the electric field of the optical mode α and
the density variation of the acoustic mode β , respectively. ρ̃β ,zp is the
fractional density change associatedwith the zero-point fluctuations
of the acoustic mode β , and is defined by KHe

∫ (
ρ̃β ,zpBβ(r)

)2 d3r=
h̄ωβ/2. The frequency of the optical (acoustic) mode is ωα (ωβ).
The bulk modulus and index of refraction of liquid He are
KHe=8.21×106 Pa and nHe=1.028, respectively.

The normal modes Aα(r) and Bβ(r) can be found by noting
that, inside the cavity, Maxwell’s equations and the hydrodynamic
equations both reduce to wave equations: the former owing to
the absence of EM sources, and the latter under the assumption
that the liquid undergoes irrotational flow with small velocity,
small displacements, and small variations in pressure and density42.
Furthermore, the cavity geometry (set by R1, R2, and L) and
the wavelengths of interest (discussed below) allow the paraxial
approximation to be used, leading to well-known solutions43. As
a result, the optical and acoustic modes share the same general
form: a standing wave along the cavity axis and a transverse profile
described by two Hermite–Gaussian polynomials. Each mode is
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indexed by three positive integers, that is: α = {xα , yα , zα} and
β={xβ ,yβ , zβ}, where the xα , yα (xβ , yβ) index the transverse optical
(acoustic) mode, and zα (zβ) is the number of optical (acoustic) half-
wavelengths in the cavity. Here, we consider only the lowest-order
transverse modes (that is, those with xα ,yα ,xβ ,yβ=0).

Boundary conditions ensure that the interface between the DBR
and the liquid He corresponds (nearly) to a node of Aα and
an antinode of Bβ . As a result, it is straightforward to show that
g α,β0 nearly vanishes unless 2zα = zβ (equivalent to the phase-
matching condition for backwards SBS40 applied to the standing
waves of a paraxial cavity). Thus, an optical mode with wavelength
(in liquid He) λα = 1.50 µm (ωα/2π = 194.5 THz) will couple
primarily to a single acoustic mode with wavelength λβ= 0.75 µm
(ωβ/2π=317.5MHz). A derivation of these features from first
principles is given in ref. 44.

The measurement set-up is illustrated in Fig. 1b,c. Light from a
tunable laser (1,520nm<λ<1,560 nm) passes through a frequency
shifter (FS) and a phase modulator (PM). The PM is driven by as
many as three tones, resulting in first-order sidebands labelled as
lock, probe, and control in Fig. 1c, while the carrier beam serves
as a local oscillator (LO). Light is delivered to (and collected from)
the cryostat via a circulator. Light leaving the cavity passes through
an erbium-doped fibre amplifier (EDFA) and then is detected by
a photodiode.

The lock beam is produced by a fixed frequency drive
(ωlock/2π=926MHz). The beat note between the reflected lock
beam and LO beam produces an error signal that is used to control
the FS, ensuring that all the beams track fluctuations in the cavity.

The probe beam is produced by the variable frequency drive
(ωprobe) from a vector network analyser (VNA). The beat note
between the reflected probe and LO beams is monitored by the
VNA. The red data in Fig. 1d show the intracavity power inferred
from the VNA signal as ωprobe is varied to scan the probe beam over
the optical mode with zα= 90. These data are taken without He in
the cell and with the refrigerator temperature TMC=30mK. Fitting
these data gives the decay rate κα/2π= (46.1±0.1)MHz, typical of
the decay rates measured with the cavity at room temperature.

To determine whether the presence of liquid He alters the
cavity’s optical loss, the blue data in Fig. 1d show the same
measurement after the cavity is filled with liquid He. For this
measurement, zα=93 and TMC= 38mK. Fitting these data gives
κα/2π= (46.3±0.2)MHz.The difference between the two values of
κα is consistent with the variations betweenmodeswhen the cavity is
empty, and is also consistent with the negligible optical loss expected
for liquid He at these temperatures45.

The acoustic modes of the liquid He were characterized
via optomechanically induced amplification (OMIA)46. To
accomplish this, a control beam was produced by the variable
frequency (ωcontrol) drive from a microwave generator. When
the difference |ωcontrol−ωprobe|≈ωβ , the intracavity beating
between the control and probe beams can excite the acoustic
mode β ; the resulting acoustic oscillations modulate the control
beam, and these modulations are detected by the VNA (see
Supplementary Information).

Figure 2a shows a typical record of the normalized amplitude a
and phase ψ of the VNA signal when the control beam is detuned
from the cavity resonance by ∆control ≈ ωβ and ωprobe is varied.
The peak at |ωcontrol−ωprobe|/2π≈317.32MHz corresponds to the
resonance of the acoustic mode. The solid line in Fig. 2a is a fit to the
expected form of a and ψ(see Supplementary Information). The fit
parameters areωβ , γβ (the acoustic damping rate), as well asA andΨ
(the overall amplitude and phase of the OMIA lineshape, described
in Supplementary Information).

Figure 2b shows A and Ψ (extracted from fits similar to the
one in Fig. 2a) as a function of ∆control and Pcontrol (the power of
the control beam). For each Pcontrol, A shows a peak of width κα
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Figure 2 | Characterizing the acoustic mode and the optomechanical
coupling. a, Relative amplitude a and phase ψ of the OMIA signal as a
function of the intracavity beat note frequency |ωcontrol−ωprobe|/2π. For
these measurements L=85.2µm, zα= 112, zβ=224, κα/2π=69±2 MHz,
∆control/2π=320 MHz, Pcontrol=4 µW, and TMC=59 mK. The solid line is
the fit described in the text and Supplementary Information. b, Amplitude A
and phase Ψ of the OMIA lineshape (determined from fits similar to the
one in a) as a function of∆control and Pcontrol. The dashed line is the fit
assuming only electrostrictive coupling; the solid line is the fit assuming
electrostrictive and slow photothermal coupling, as described in the text
and Supplementary Information (note that the two fits are indistinguishable
in the upper panel).

centred at ∆control = ωβ , while Ψ changes by ∼π over the same
range of ∆control. These features correspond to the excitation of the
optical resonance by the probe beam. Fitting the measurements of
A and Ψ to the expected form of the OMIA response (assuming
purely electrostrictive coupling) gives the dashed lines in Fig. 2b.
This fit has only one parameter ( g α,β0 ) and returns the best-fit
value g α,β0 /2π= (3.3± 0.2)× 103 Hz; in comparison, numerical
evaluation of equation (1) gives g α,β0 /2π= (3.5±0.5)×103 Hz.

Although this fit captures many features of the data, it
overestimates Ψ by an amount roughly independent of ∆control and
Pcontrol. To account for this constant phase shift, we calculated the
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Figure 3 | Acoustic damping as a function of temperature. a, Acoustic quality factor Qβ versus TMC. Di�erent colours correspond to di�erent values of Pinc,
the total optical power incident on the cavity. The red and blue dashed lines are the predicted contributions to Qβ from the internal loss and radiation loss,
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OMIA signal that would result if the optical intensity also drives the
acousticmode via an interactionmediated by a processmuch slower
than ωβ (see Supplementary Information). Such a slow interaction
would arise naturally from a photothermal process in which optical
absorption in the DBR heats the liquid He. The solid lines in Fig. 2b
are a fit to this calculation, in which the fit parameters are g α,β0
and g α,β0,pt (the single-photon photothermal coupling rate) and the
best-fit values are g α,β0 /2π= (3.18± 0.2)× 103 Hz and g α,β0,pt/2π=
(0.97±0.05)×103 Hz, respectively.

The damping of the acoustic modes is expected to be dominated
by two processes. The first is mode conversion via the nonlinear
compressibility of liquid He. This process has been studied
extensively28, and for the relevant temperature range would
result in an acoustic quality factor Qβ ,int = ωβ/γβ = χ/T 4

bath,
where χ=118K4 (see Supplementary Information) and Tbath is
the temperature of the He in the cavity. The second expected
source of damping is acoustic radiation from the He into
the confining materials. This process is predicted to result in
Qβ ,ext= (79±5)×103 (see Supplementary Information).

Figure 3a shows Qβ (determined from data and fits similar to
Fig. 2a) as a function of TMC and Pinc (the total laser power incident
on the cavity). Also shown are the predictedQβ ,int andQβ ,ext (dashed
lines), and their combined effect assuming Tbath=TMC (black line).
Although the data show qualitative agreement with the predicted
trends, there is also a clear dependence of Qβ upon Pinc. Figure 3(b)
shows that Qβ depends on the mean intracavity photon number n̄α
as well as Pinc.

For the conditions of these measurements, dynamical
backaction1 (that is, optical damping) is not expected to contribute
appreciably to Qβ . Instead, we consider a model in which light
is absorbed in the DBRs, resulting in heat flow into the cavity
Φ = µPinc + νh̄ωακα,intn̄α . Here, κα,int is the intracavity loss rate
(and is determined from measurements similar to those shown
in Fig. 1d), while ν and µ are dimensionless constants that
characterize, respectively, the absorbers’ overlap with the cavity’s
optical standing mode (which extends into the upper layers of the
DBRs) and the input fibre’s optical travelling mode. In the presence
of Φ , equilibrium is maintained by the thermal conductance
between the cavity and the MC, which is limited by the sheath of
liquid He between the optical fibres and the glass ferrule (Fig. 1a).
For the relevant temperature range, the conductance of liquid He
is k= εT 3, where T is the local temperature and ε is measured to
be (5± 2.5)× 10−5 WK−4 (see Supplementary Information). This
model predicts that

Tbath=

(
T 4

MC+
4
ε
(µPinc+νh̄ωακα,intn̄α)

)1/4

(2)

The coloured solid lines in Fig. 3a,b are the result of fitting
the complete data set to Qβ(Tbath)= (Q−1β ,int(Tbath)+ Q−1

β ,ext)
−1 by

using equation (2) and taking ν/µ, µ/ε, and Qβ ,ext as fitting
parameters. This fit gives ν/µ=388±72, µ/ε= (12±2)K4 W−1,
and Qβ ,ext = (70± 2.0)× 103. The value of ν/µ is consistent with
absorbers being distributed throughout the DBR layers, and the
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value of Qβ ,ext is consistent with the a priori calculation in the
Supplementary Information.

Figure 3c shows the data from Fig. 3a,b replotted as a function
of Tbath (calculated from equation (2) and the best-fit values of
ν/µ and µ/ε). The data collapse together, indicating that Qβ is
determined by Tbath, which in turn is determined by TMC, Pinc and n̄α
in accordance with the model described above. The collapsed data
are in close agreement with the prediction for Qβ(Tbath) (the black
line in Fig. 3c).

To determine n̄β (the mean phonon number of the acoustic
mode), a heterodyne technique was used to measure the Stokes
sideband imprinted on the control beam by the acoustic mode’s
thermal fluctuations. For these measurements, the probe beam was
turned off and the control beam’s detuning relative to the cavity
resonance was set to∆control≈ωβ . A spectrum analyser was used to
monitor the photocurrent at frequencies near the beat note between
the Stokes sideband and the LO. Figure 4a shows SII (ω), the power
spectral density (PSD) of the photocurrent, for a range of TMC and
Pinc. As TMC and Pinc are reduced the acoustic resonances become
narrower, in qualitative agreement with Fig. 3.

Figure 4b shows the same data as in Fig. 4a, but with SII con-
verted to Sρ̃ρ̃ (the PSD of fractional density fluctuations), and
normalized by 4ρ̃2

β ,zp/γβ (see Supplemental Information) so that the
peak height corresponds to n̄β . The solid lines are fits to the expected
Lorentzian lineshape. Figure 4c shows n̄β determined from these fits
and plotted as a function of Tbath (determined using equation (2)).
Also shown is the solid red line corresponding to the prediction
n̄β=kBTbath/h̄ωβ . The data and prediction show close agreement for
n̄β as low as 11± 0.3, indicating that the acoustic mode remains in
thermal equilibrium with the material temperature Tbath.

In conclusion, these results demonstrate a promising combi-
nation of cavity optomechanics with a superfluid liquid. This
system requires no in situ alignment, and achieves dimensionless
figures of merit comparable to state-of-the-art optomechanical

systems, for example, in sideband resolution (ωβ/κα = 4.6), bath
phonon occupancy (n̄bath≡ kBTbath/h̄ωβ = 11), and single-photon
cooperativity (C0 = 4(g α,β0 )2/καγβ = 1.5× 10−4). The maximum
multi-photon cooperativity (C = 0.03) is relatively modest, as
n̄α is limited by heating from optical absorption in the mirrors.
Some quantum optomechanical phenomena (such as quantum
asymmetry and correlation in the motional sidebands) may be
observed in devices with these parameters47; other goals, such as
ground-state cooling and the production of squeezed or entangled
states, typically require C>1 or C>nth.

To assess the feasibility of improving C , we note that the
simple model which accurately describes the system’s performance
shows that this performance is not limited by the liquid helium,
but rather by the cavity mirrors. Specifically, γβ is dominated
by the mirrors’ acoustic transmission, and Tbath is dominated by
the mirrors’ optical absorption. Since Tbath also contributes to
γβ (red dashed line in Fig. 3c), substantial improvements will
require reducing both the acoustic transmission and the heating
due to the optical absorption. As described in the Supplementary
Information, the same model that reproduces the data shown here
indicates that both of these improvements can be achieved by
straightforward refinements. Specifically, γβ may be decreased by
a factor ∼40 using DBRs that serve as high-reflectivity acoustic
mirrors as well as optical mirrors. In addition, Tbath can be lowered
by increasing the thermal conductance between the cavity and the
refrigerator (for example, using the cavity geometry described in
ref. 39). Together, these refinements should lead to 1 <C≈nth (see
Supplementary Information).

These results open a number of qualitatively new directions,
such as cavity optomechanical coupling to degrees of freedom that
are unique to superfluid liquid He, including: the Kelvin modes of
remnant vortex lines; ripplon modes of the superfluid’s free surface;
andwell-controlled impurities, such as electrons on the surface or in
the bulk of the superfluid. Precision measurements of these degrees
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of freedom may provide new insight into long-standing questions
about their roles in superfluid turbulence48,49 and their potential
applications in quantum information processing50.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon reasonable request.
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